Suppressing grain boundary embrittlement via Mo-driven interphase precipitation mechanism in martensitic stainless steel

Author(s):  
Jialong Tian ◽  
Kai Chen ◽  
Huabing Li ◽  
Zhouhua Jiang
Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


2011 ◽  
Vol 409 ◽  
pp. 455-460 ◽  
Author(s):  
Motohiro Yuasa ◽  
Mamoru Mabuchi

The GB embrittlement mechanism of Fe enhanced by P segregation has been investigated by first-principles tensile tests because a P atom is a famous GB embrittler in Fe. The first-principles tensile tests have been performed on Fe with two P-segregated GBs, where P atoms are located at the different sites, and with a nonsegregated GB. The tensile strength and the strain to failure in the P-segregated GBs were lower than those in the nonsegegated GB. The first bond breaking occurred at the Fe-P bond owing to the covalent-like characteristics, although the charge densities were high at the Fe-P bonds even just before the bond breaking. This premature bond breaking of Fe-P was independent of the location of the P atom.


CORROSION ◽  
10.5006/3839 ◽  
2021 ◽  
Author(s):  
Christina Charalampidou ◽  
Christiaan Pretorius ◽  
Roelf Mostert ◽  
Nikolaos Alexopoulos

Aluminium alloy 2024-T3 was examined – using a range of microscopy techniques – at the early stages of corrosion attack to investigate the corrosion-induced cracking mechanism. Two different corrosive environments, exfoliation corrosion (EXCO) and 3.5 % wt. NaCl, were used for the exposure of tensile and pre-notched compact-tension C(T) specimens of AA2024-T3. Different embrittlement mechanisms are noticed for the two investigated corrosive environments. Significant intergranular corrosion (IGC) and grain boundary embrittlement is evident in the specimens exposed to EXCO solution, while this was not the case for the milder solution; comprising of 3.5 % wt. NaCl. With regards to the milder solution, corrosion attack is not restricted to the grain boundary, but evolves transgranularly to the neighbouring grains of the IGC attacked region and, consequently, the grain boundary strength in the direct vicinity is not notably affected. The extent of secondary cracks – after the exposure of C(T) specimens to EXCO solution and the subsequent crack-growth resistance evaluation – were found to correlate with the diameter of the plastically affected zone (≈ 3.78 ± 0.04 mm). Additionally, the depth of these cracks was found to correlate well with the thickness of the intergranular fracture surface, giving evidence that the secondary cracks form due to grain boundary embrittlement; probably attributed to hydrogen embrittlement phenomena.


1980 ◽  
Vol 20 (12) ◽  
pp. 810-816 ◽  
Author(s):  
Kazuo YAMANAKA ◽  
Fukunaga TERASAKI ◽  
Hiroo OHTANI ◽  
Mitsuo ODA ◽  
Masahiro YOSHIHARA

Sign in / Sign up

Export Citation Format

Share Document