Electroactive polymer-based inner vessel-wall pressure transducer capable of integration with a PTA balloon catheter for examining blood vessel health

2020 ◽  
Vol 114 ◽  
pp. 111047
Author(s):  
Guo-Hua Feng ◽  
Liang-Chao Wang
1977 ◽  
Vol 38 (04) ◽  
pp. 0831-0849 ◽  
Author(s):  
Gwendolyn J. Stewart

SummaryBoth deep venous thrombosis and DIC are intermediate mechanisms of disease – both are a consequence of the deposition of fibrin-rich material in blood vessels some distance from the primary site of tissue destruction. The great difference in the sites of fibrin deposition may depend on the extent and site of activation of the clotting mechanism. DIC likely occurs in the fluid phase of the blood as a consequence of massive fibrin formation while thrombosis results from limited fibrin formation at the interface between blood and vessel wall. Leukocytes may be essential for attaching thrombi to the vessel wall in many places.


Circulation ◽  
1984 ◽  
Vol 70 (4) ◽  
pp. 523-528 ◽  
Author(s):  
P J Cannon

Author(s):  
Mikael Sandell ◽  
Rikard Grankvist ◽  
Stefan Jonsson ◽  
Wouter M. van der Wijngaart ◽  
Goran Stemme ◽  
...  

2009 ◽  
Vol 10 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Guerman Molostvov ◽  
Rosemary Bland ◽  
Daniel Zehnder

2018 ◽  
Vol 5 (6) ◽  
Author(s):  
Yomna H. Shash ◽  
Mohamed A. A. Eldosoky ◽  
Mohamed T. Elwakad

Introduction: The non-invasive nature of bioimpedance technique is the reason for the adoption of this technique in the wide field of bio-research. This technique is useful in the analysis of a variety of diseases and has many advantages. Cardiovascular diseases are the most dangerous diseases leading to death in many regions of the world. Vascular diseases are disorders that affect the arteries and veins. Most often, vascular diseases have greater impacts on the blood flow, either by narrowing or blocking the vessel lumen or by weakening the vessel wall. The most common vascular diseases are atherosclerosis, wall swelling (aneurysm), and occlusion. Atherosclerosis is a disease caused by the deposition of plaques on the inner vessel wall, while a mural aneurysm is formed as a result of wall weakness. The main objective of this study was to investigate the effects of vascular diseases on vessel impedance. Furthermore, this study aimed to develop the measurement of vessel abnormalities as a novel method based on the bioimpedance phenomenon. Methods: Mathematical models were presented to describe the impedance of vessels in different vascular cases. In addition, a 3D model of blood vessels was simulated by COMSOL MULTIPHYSICS.5, and the impedance was measured at each vascular condition. Results: The simulation results clarify that the vascular disorders (stenosis, blockage or aneurysm) have significant impact on the vessel impedance, and thus they can be detected by using the bio-impedance analysis. Moreover, using frequencies in KHz range is preferred in detecting vascular diseases since it has the ability to differentiate between the healthy and diseased blood vessel. Finally, the results can be improved by selecting an appropriate electrodes configuration for analysis. Conclusion: From this work, it can be concluded that bioimpedance analysis (BIA) has the ability to detect vascular diseases. Furthermore, the proposed mathematical models are successful at describing different cases of vascular disorders.


Sign in / Sign up

Export Citation Format

Share Document