inner vessel
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7514
Author(s):  
Alexander Pelmenev ◽  
Alexander Levchenko ◽  
Leonid Mezhov-Deglin

The onset of the Rayleigh–Benard convection (RBC) in a heated from above normal He-I layer in a cylindrical vessel in the temperature range Tλ < T ≤ Tm (RBC in non-Oberbeck–Boussinesq approximation) is attended by the emergence of a number of vortices on the free liquid surface. Here, Tλ = 2.1768 K is the temperature of the superfluid He-II–normal He-I phase transition, and the liquid density passes through a well-pronounced maximum at Tm ≈ Tλ + 6 mK. The inner vessel diameter was D = 12.4 cm, and the helium layer thickness was h ≈ 2.5 cm. The mutual interaction of the vortices between each other and their interaction with turbulent structures appeared in the layer volume during the RBC development gave rise to the formation of a vortex dipole (two large-scale vortices) on the surface. Characteristic sizes of the vortices were limited by the vessel diameter. The formation of large-scale vortices with characteristic sizes twice larger than the layer thickness can be attributed to the arising an inverse vortex cascade on the two-dimensional layer surface. Moreover, when the layer temperature exceeds Tm, convective flows in the volume decay. In the absence of the energy pumping from the bulk, the total energy of the vortex system on the surface decreases with time according to a power law.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanghyun An ◽  
Junsik Kim ◽  
Donghyun Lee ◽  
Minwoo Kim ◽  
Kangil Byun ◽  
...  

AbstractThis study aimed to evaluate the biocompatibility and patency of our newly developed titanium vascular anastomotic device (TVAD) in a pig jugular vein. TVAD was made of commercially pure grade 2 titanium. The patency and anastomotic time were simultaneously confirmed in an ex-vivo system developed by the authors and in vivo using pig jugular veins. Five 8-month-old pigs, with body weights of 50–60 kg, underwent anastomosis of both jugular veins using the device. Graft patency was evaluated for 12 weeks by biplane angiography and sonography. All tissue biopsy samples were analysed by histology. In all 10 cases, the anastomosis was completed in < 5 min. The vessel lumen was not damaged, and the inner vessel wall was completely endothelialised at the anastomotic site. No foreign body reactions were observed at the vessel lumen, vessels, and outer vessel walls by histopathologic analysis. Patency and absence of leakage at the anastomotic site of the follow-up period were confirmed clearly by angiography and sonography. This preliminary animal study proved that our newly developed device is a very promising tool for intima-to-intima contact anastomosis. TVAD can be used as a feasible and safe medical tool for vessel anastomosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 709
Author(s):  
Ana E. Cartaya ◽  
Halle Lutz ◽  
Sophie Maiocchi ◽  
Morgan Nalesnik ◽  
Edward M. Bahnson

Selective delivery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators to the injured vasculature at the time of vascular surgical intervention has the potential to attenuate oxidative stress and decrease vascular smooth muscle cell (VSMC) hyperproliferation and migration towards the inner vessel wall. To this end, we developed a nanoformulation of cinnamic aldehyde (CA), termed Antioxidant Response Activating nanoParticles (ARAPas), that can be readily loaded into macrophages ex vivo. The CA-ARAPas-macrophage system was used to study the effects of CA on VSMC in culture. CA was encapsulated into a pluronic micelle that was readily loaded into both murine and human macrophages. CA-ARAPas inhibits VSMC proliferation and migration, and activates Nrf2. Macrophage-mediated transfer of CA-ARAPas to VSMC is evident after 12 h, and Nrf2 activation is apparent after 24 h. This is the first report, to the best of our knowledge, of CA encapsulation in pluronic micelles for macrophage-mediated delivery studies. The results of this study highlight the feasibility of CA encapsulation and subsequent macrophage uptake for delivery of cargo into other pertinent cells, such as VSMC.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Wenyi Liu ◽  
Jiwen Hu ◽  
Yatao Liu ◽  
Weirui Liu ◽  
Xuekun Chen

Purpose: The goal of this study was to evaluate the biomechanical effects such as sonoporation or permeability, produced by ultrasound- driven microbubbles (UDM) within microvessels with various parameters. Methods: In this study, a bubble-fluid-solid coupling system was established through combination of finite element method. The stress, strain and permeability of the vessel wall were theoretically simulated for different ultrasound frequencies, vessel radius and vessel thickness. Results: the bubble oscillation induces the vessel wall dilation and invagination under a pressure of 0.1 MPa. The stress distribution over the microvessel wall was heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.7 MPa as a frequency ranges from 1 to 3 MHz, and a vessel radius and an initial microbubble radius fall within the range of 3.5–13 μm and 1–4 μm, respectively. With the same conditions, the maximum shear stress was equal to 1.2 kPa and occurred at a distance of ±5 μm from the midpoint of 10 μm and the maximum value of permeability was 3.033 × 10–13. Conclusions: Results of the study revealed a strong dependence of biomechanical effects on the excitation frequency, initial bubble radius, and vessel radius. Numerical simulations could provide insight into understanding the mechanism behind bubble-vessel interactions by UDM, which may explore the potential for further improvements to medical applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marc-Antoine Hannappe ◽  
Louis Arnould ◽  
Alexandre Méloux ◽  
Basile Mouhat ◽  
Florence Bichat ◽  
...  

Abstract We aimed to compare retinal vascular density in Optical Coherence Tomography Angiography (OCT-A) between patients hospitalized for acute coronary syndrome (ACS) and control patients and to investigate correlation with angiogenesis biomarkers. Patients hospitalized for an acute coronary syndrome (ACS) in the Intensive Care Unit were included in the “high cardiovascular risk” group while patients without cardiovascular risk presenting in the Ophthalmology department were included as “control”. Both groups had blood sampling and OCT-A imaging. Retina microvascularization density in the superficial capillary plexus was measured on 3 × 3 mm angiograms centered on the macula. Angiopoietin-2, TGF-β1, osteoprotegerin, GDF-15 and ST-2 were explored with ELISA or multiplex method. Overall, 62 eyes of ACS patients and 42 eyes of controls were included. ACS patients had significantly lower inner vessel length density than control patients (p = 0.004). A ROC curve found that an inner vessel length density threshold below 20.05 mm−1 was moderately associated with ACS. Significant correlation was found between serum levels of angiopoietin-2 and osteoprotegerin, and retinal microvascularization in OCT-A (R = − 0.293, p = 0.003; R = − 0.310, p = 0.001). Lower inner vessel length density measured with OCT-A was associated with ACS event and was also correlated with higher concentrations of angiopoietin-2 and osteoprotegerin.


Author(s):  
Dusan Spernjak ◽  
Kevin Fehlmann ◽  
Devin Cardon ◽  
Nathan Yost ◽  
Dallas Hill ◽  
...  

Abstract A containment system is being developed to expand the capability of proton radiography of small-scale shock physics experiments at Los Alamos National Laboratory (LANL). The detonation of high explosives (HE) drives materials to extreme loading conditions, which are imaged using a proton beam and an imaging system. A qualified confinement and containment boundary needs to exist between a high-explosive experiment and the environment, and is comprised of the Inner Pressure Confinement Vessel (IPCV) and the Outer Pressure Containment Vessel (OPCV). The Inner Vessel is designed to the criteria of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564. The vessel contains an Experimental Physics Package, fragment mitigation structure, and radiographic windows. The windows need to minimize radiographic blur contribution (thin, radiographically transparent material such as Beryllium) over the field of view for imaging, but also need to maintain the pressure boundary during and after the dynamic event. Further, the vessel covers need to seal before, during, and after the experiment . In addition, the covers have miscellaneous feedthroughs, to enable high-voltage signal (for HE detonator), instrumentation and control signals (e.g. valves, pressure and vacuum gauge, optical fibers). We present the preliminary design, analyses, and testing of the Inner Vessel components.


Author(s):  
Kevin Fehlmann ◽  
Dusan Spernjak ◽  
Devin Cardon ◽  
Dallas Hill ◽  
Nathan Yost ◽  
...  

Abstract A containment and confinement pressure vessel system is under development to expand the capability to perform small explosively driven physics experiments at the Proton Radiography facility at Los Alamos National Laboratory (LANL). Two barriers of this vessel system are the Inner Pressure Confinement Vessel (IPCV) and the Outer Pressure Containment Vessel (OPCV). To achieve high spatial resolution of proton images, radiographic windows (covers) of the Inner Vessel are located extremely close to the experiment containing high explosive (HE). While the Inner Vessel is designed to meet the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564 criteria, the small separation between the explosive and the pressure-retaining boundary presents a unique requirement for designing dynamically loaded vessels. We present numerical simulations of HE detonation in the Inner Vessel for several HE configurations. Eularian hydrodynamic code is used to calculate pressure-time history on the inner vessel surface. The pressure-time loading is then imported into a Langrangian structural model, and high-fidelity structural dynamic simulations are performed to obtain stress and strain as functions of time. Simulations are compared against experimental measurements from dynamic testing. Dynamic experiments are conducted in a low-fidelity (LoFi) vessel prototype, to measure the pressure and strain in regions of interest in different vessel locations (body, radiographic windows, covers).


Author(s):  
Muhammad Musaddique Ali Rafique ◽  
Umair Shah

Hydrothermal /super critical processes are important process to synthesize materials which are otherwise difficult to form under normal conditions. A mathematical model is developed using standard transport equations to calculate the time for heating of hydrothermal reactor and computer simulation of the model was carried out in SOLIDWORKS&reg; to validate it. The materials used to form reactor vessel were stainless steel (outer body) and TEFLON (PFA) (inner vessel). It was shown that composite wall, its geometry, construction &amp; properties greatly affect the time and pattern of heat transfer. The time calculated and pattern generated were found to be in good agreement with experimental values.


Author(s):  
Dusan Spernjak ◽  
Robert Valdiviez ◽  
Kevin Fehlmann ◽  
Dallas Hill ◽  
Joshem Gibson ◽  
...  

Abstract A unique containment and confinement system is under development to conduct small explosively driven physics experiments containing hazardous materials at the Proton Radiography facility at Los Alamos National Laboratory (LANL). In these experiments, the detonation of high explosives (HE) is used to drive materials to extreme loading conditions, where some of the materials tested can be extremely hazardous (e.g. nuclear materials). The main components of the system are the Inner Pressure Confinement Vessel (IPCV, which hosts the physics experiment), the Outer Pressure Containment Vessel (OPCV) and Beam Pipes and Auxiliary Hardware (BPAH). This paper describes the design and preliminary analyses of the IPCV. The body of the IPCV, also referred to as the Inner Vessel, is being designed to the criteria of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564, with the exception of the materials of construction. The closure covers have different devices mounted on them, such as feedthrough devices for sending or receiving electrical and optical signals across the pressure boundary, and valves for venting the vessel interior. The unique feature in the vessel design are the radiographic windows, tentatively made of Beryllium, which need to be strong enough to maintain the pressure boundary during dynamic events, while being radiographically low-attenuating for the purpose of proton imaging.


Sign in / Sign up

Export Citation Format

Share Document