Mesoporous carbon aerogel with tunable porosity as the catalyst support for enhanced proton-exchange membrane fuel cell performance

2021 ◽  
Vol 19 ◽  
pp. 100560
Author(s):  
K. Gu ◽  
E.J. Kim ◽  
S.K. Sharma ◽  
P.R. Sharma ◽  
S. Bliznakov ◽  
...  
2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


2021 ◽  
Vol 514 ◽  
pp. 230574
Author(s):  
Yannick Garsany ◽  
Robert W. Atkinson ◽  
Benjamin D. Gould ◽  
Rachel Martin ◽  
Laetitia Dubau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document