Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis

2020 ◽  
Vol 13 ◽  
pp. 100216 ◽  
Author(s):  
S. Song ◽  
L. Yu ◽  
X. Xiao ◽  
Z. Qin ◽  
W. Zhang ◽  
...  
ChemCatChem ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 4416-4421
Author(s):  
Pengkun Wei ◽  
Zewei Hao ◽  
Hongzhi Kang ◽  
Yang ◽  
Donggang Guo ◽  
...  

Recycling ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 42 ◽  
Author(s):  
Eric Garcia ◽  
Hosane Taroco

In this paper, a new environmentally-friendly anode for hydrogen production was developed based on 430 stainless steel with an electrodeposited cobalt layer. The novelty of this work is the cobalt source once the electrodeposition bath was obtained from acid dissolution of a spent Li-ion battery cathode. The oxygen evolution reaction on electrodeposited cobalt in 1 M KOH is compatible with the E. Kobussen mechanism. The water discharge is related with reaction determinant step in low overpotential. The cobalt electrodeposition (3 Ccm−2) promotes a significant improvement of 430 stainless steel anodic properties for oxygen evolution reaction. When the overpotential reaches 370 mV, the density current for 430 stainless steel with electrodeposit cobalt is 19 mA·cm−2 against 0.80 mA·cm−2 for 430 stainless steel without cobalt. Thus, the anode construction described in this paper is an excellent option for Li-ion battery recycling.


2016 ◽  
Vol 8 (30) ◽  
pp. 19386-19392 ◽  
Author(s):  
Zhaoyang Wang ◽  
Jiantao Li ◽  
Xiaocong Tian ◽  
Xuanpeng Wang ◽  
Yang Yu ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daire Tyndall ◽  
Sonia Jaskaniec ◽  
Brian Shortall ◽  
Ahin Roy ◽  
Lee Gannon ◽  
...  

AbstractNickel–iron-layered double hydroxide (NiFe LDH) platelets with high morphological regularity and submicrometre lateral dimensions were synthesized using a homogeneous precipitation technique for highly efficient catalysis of the oxygen evolution reaction (OER). Considering edge sites are the point of activity, efforts were made to control platelet size within the synthesized dispersions. The goal is to controllably isolate and characterize size-reduced NiFe LDH particles. Synthetic approaches for size control of NiFe LDH platelets have not been transferable based on published work with other LDH materials and for that reason, we instead use postsynthetic treatment techniques to improve edge-site density. In the end, size-reduced NiFe LDH/single-wall carbon nanotube (SWCNT) composites allowed to further reduce the OER overpotential to 237 ± 7 mV (<L> = 0.16 ± 0.01 μm, 20 wt% SWCNT), which is one of the best values reported to date. This approach as well improved the long-term activity of the catalyst in operating conditions.


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


2015 ◽  
Vol 8 (9) ◽  
pp. 2685-2697 ◽  
Author(s):  
Helmut Schäfer ◽  
Shamaila Sadaf ◽  
Lorenz Walder ◽  
Karsten Kuepper ◽  
Stephan Dinklage ◽  
...  

Stainless steel was upon electro-initiated surface oxidation converted in an oxygen evolution reaction (OER) electrocatalyst with benchmark properties.


2017 ◽  
Vol 1 (11) ◽  
pp. 2376-2382 ◽  
Author(s):  
Anirudh Balram ◽  
Hanfei Zhang ◽  
Sunand Santhanagopalan

This work reports inexpensive stainless steel support enhanced activity of α-Ni(OH)2 for high performance OER catalysis.


Nano Research ◽  
2021 ◽  
Author(s):  
Qikang Wu ◽  
Songrui Wang ◽  
Jiahui Guo ◽  
Xueqing Feng ◽  
Han Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document