Limit behavior of the global solutions to the Degasperis–Procesi-type equation

2011 ◽  
Vol 74 (17) ◽  
pp. 6004-6011
Author(s):  
Fei Guo
2009 ◽  
Vol 11 (03) ◽  
pp. 395-411 ◽  
Author(s):  
LEI ZHANG

We consider a sequence of blowup solutions of a two-dimensional, second-order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci–Chen–Lin–Tarantello, it is proved that the profile of the solutions differs from global solutions of a Liouville-type equation only by a uniformly bounded term. The present paper improves their result and establishes an expansion of the solutions near the blowup points with a sharp error estimate.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hatice Taskesen ◽  
Necat Polat ◽  
Abdulkadir Ertaş

We will give conditions which will guarantee the existence of global weak solutions of the Boussinesq-type equation with power-type nonlinearity and supercritical initial energy. By defining new functionals and using potential well method, we readdressed the initial value problem of the Boussinesq-type equation for the supercritical initial energy case.


2017 ◽  
Vol 22 (4) ◽  
pp. 441-463 ◽  
Author(s):  
Amin Esfahani ◽  
Hamideh B. Mohammadi

We consider the Cauchy problem for a Boussinesq-type equation modeling bidirectional surface waves in a convecting fluid. Under small condition on the initial value, the existence and asymptotic behavior of global solutions in some time weighted spaces are established by the contraction mapping principle.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Changming Song ◽  
Jina Li ◽  
Ran Gao

We are concerned with the singularly perturbed Boussinesq-type equation including the singularly perturbed sixth-order Boussinesq equation, which describes the bidirectional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number (surface tension parameter) less than but very close to 1/3. The nonexistence of global solution to the initial boundary value problem for the singularly perturbed Boussinesq-type equation is discussed and two examples are given.


2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


Sign in / Sign up

Export Citation Format

Share Document