scholarly journals Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

2020 ◽  
Vol 52 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Chenglong Wang ◽  
Hao Sun ◽  
Simiao Tang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  
Author(s):  
Xiaoyu Cai ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
Changyou Zhao

The current Light Water Reactors both BWR and PWR have extensive nuclear reactor safety systems, which provide safe and economical operation of Nuclear Power Plants. During about forty years of operation history the safety systems of Nuclear Power Plants have been upgraded in an evolutionary manner. The cost of safety systems, including large containments, is really high due to a capital cost and a long construction period. These conditions together with a low efficiency of steam cycle for LWR create problems to build new power plants in the USA and in the Europe. An advanced Boiling Water Reactor concept with micro-fuel elements (MFE) and superheated steam promises a radical enhancement of safety and improvement of economy of Nuclear Power Plants. In this paper, a new type of nuclear reactor is presented that consists of a steel-walled tube filled with millions of TRISO-coated fuel particles (Micro-Fuel Elements, MFE) directly cooled by a light-water coolant-moderator. Water is used as coolant that flows from bottom to top through the tube, thereby fluidizing the particle bed, and the moderator water flows in the reverse direction out of the tube. The fuel consists of spheres of about 2.5 mm diameter of UO2 with several coatings of different carbonaceous materials. The external coating of steam cycle the particles is silicon carbide (SiC), manufactured with chemical vapor deposit (CVD) technology. Steady-State Thermal-Hydraulic Analysis aims at providing heat transport capability which can match with the heat generated by the core, so as to provide a set of thermal hydraulic parameters of the primary loop. So the temperature distribution and the pressure losses along the direction of flow are calculated for equilibrium core in this paper. The calculation not only includes the liquid region, but the two phase region and the superheated steam region. The temperature distribution includes both the temperature parameters of micro-fuel elements and the coolant. The results show that the maximum fuel temperature is much lower than the limitation and the flow distribution can meet the cooling requirement in the reactor core.


Author(s):  
H. K. Cho ◽  
B. J. Yun ◽  
I. K. Park ◽  
J. J. Jeong

A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analyses of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopts three-dimensional, transient, two-phase and three-field model, and includes various physical models and correlations of the interfacial mass, momentum and energy transfer for the closure relations of the two-fluid model. In the present paper, the two-phase models were assessed against the DOBO (DOwncomer BOiling) experiment, which was constructed to simulate the downcomer boiling phenomenon. It may happen in the downcomer of a nuclear reactor vessel during the reflood phase of a postulated loss of coolant accident. The stored energy release from the reactor vessel to the liquid inside the downcomer causes the boiling on the wall, and it can reduce the hydraulic head of the accumulated water, which is the driving force of water reflooding to the core. This phenomenon has been considered as a crucial safety issue of an advanced power reactor because it is concerned with the core cooling capability of the safety injection system. In this paper, the physical models and correlations that were incorporated into the CUPID code were introduced and the validation results against the experiment were reported. The benchmark calculation results concluded that the CUPID code can appropriately predict the boiling phenomena under a low pressure and low flow rate condition with modification of the bubble size correlation.


Author(s):  
A. Dragunov ◽  
W. Peiman

Pressure drop calculation and temperature profiles associated with fuel and sheath are important aspects of a nuclear reactor design. The main objective of this paper is to determine the pressure drop in a fuel channel of a SuperCritical Water-cooled Reactor (SCWR) and to calculate the temperature profile of the sheath and the fuel bundles. One-dimensional steady-state thermal-hydraulic analysis was conducted. In this study, the pressure drops due to friction, acceleration, local losses, and gravity were calculated at supercritical conditions.


2019 ◽  
Vol 30 (1) ◽  
Author(s):  
Cheng-Long Wang ◽  
Tian-Cai Liu ◽  
Si-Miao Tang ◽  
Wen-Xi Tian ◽  
Sui-Zheng Qiu ◽  
...  

2016 ◽  
Vol 307 ◽  
pp. 218-233 ◽  
Author(s):  
Wenwen Zhang ◽  
Dalin Zhang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
G.H. Su

2020 ◽  
Vol 136 ◽  
pp. 107018 ◽  
Author(s):  
Wenwen Zhang ◽  
Dalin Zhang ◽  
Xiao Liu ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document