scholarly journals Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations

Author(s):  
Siddharth Suman
2016 ◽  
Vol 307 ◽  
pp. 319-327 ◽  
Author(s):  
Siddharth Suman ◽  
Mohd. Kaleem Khan ◽  
Manabendra Pathak ◽  
R.N. Singh ◽  
J.K. Chakravartty

2015 ◽  
Vol 69 ◽  
pp. 436-444 ◽  
Author(s):  
M. Grosse ◽  
C. Roessger ◽  
J. Stuckert ◽  
M. Steinbrueck ◽  
A. Kaestner ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjun Lu ◽  
Libo Qian ◽  
Wenzhong Zhou

Under loss-of-coolant conditions, the temperature on fuel cladding will increase rapidly (up to 1000–1500 K), which will not only cause a dramatic oxidation reaction of Zircaloy-4 and an increase in hydrogen concentration but also cause an allotropic phase transformation of Zircaloy-4 from hexagonal (α-pahse) to cubic (β-phase) crystal structure. As we all know, thermophysical properties have a close relationship with the microstructure of the material. Moreover, because of an important influence of the phase transformation on the creep resistance and the ductility of the fuel rod, studying the crystallographic phase transformation kinetics is pivotal for evaluating properties for fuel rod completeness. We coupled the phase transformation model together with the existing physical models for reactor fuel, gap, cladding, and coolant, based on the finite element analysis and simulation software COMSOL Multiphysics. The critical parameter for this transformation is the evolution of the volume fraction of the favored phase described by a function of time and temperature. Hence, we choose two different volume fractions (0 and 10%) of BeO for UO2-BeO enhanced thermal conductivity nuclear fuel and zircaloy cladding as objects of this study. In order to simulate loss-of-coolant accident conditions, five relevant parameters are studied, including the gap size between fuel and cladding, the temperature at the extremities of the fuel element, the coefficient of heat transfer, the linear power rate, and the coolant temperature, to see their influence on the behavior of phase transformation under non-isothermal conditions. The results show that the addition of 10vol%BeO in the UO2 fuel decreased the phase transformation effect a lot, and no significant phase transformation was observed in Zircaloy-4 cladding with UO2-BeO enhanced thermal conductivity nuclear fuel during existing loss-of-coolant accident conditions.


2021 ◽  
Vol 13 (3) ◽  
pp. 1442
Author(s):  
Sanggil Park ◽  
Jaeyoung Lee ◽  
Min Bum Park

The temperature of zirconium alloy cladding on the postulated spent nuclear fuel pool complete loss of coolant accident is abruptly increased at a certain time and the cladding is almost fully oxidized to weak ZrO2 in the air. This abrupt temperature escalation phenomenon induced by the air-oxidation breakaway is called a zirconium fire. Although an air-oxidation breakaway kinetic model correlated between time and temperature has been implemented in the MELCOR code, it is likely to bring about unexpected large errors because of many limitations of model derivation. This study suggests an improved time–temperature correlated kinetic model using the Johnson–Mehl equation. It is based on that the air-oxidation breakaway is initiated by the phase transformation from the tetragonal to monoclinic ZrO2 at the oxide–metal interface in the cladding. This new model equation is also evaluated with the Zry-4 air-oxidation literature data. This equation resulted in the almost similar air-oxidation breakaway timing to the actual experimental data at 800 °C. However, at 1000 °C, it showed an error of about 8 min. This could be inferred from the influence of the ZrN phase change due to the nitrogen existing in air.


Sign in / Sign up

Export Citation Format

Share Document