Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability

2015 ◽  
Vol 170 ◽  
pp. 417-427 ◽  
Author(s):  
Wentao Guo ◽  
Feng Liu ◽  
Jennie Si ◽  
Dawei He ◽  
Ronald Harley ◽  
...  
2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


2020 ◽  
Vol 10 (24) ◽  
pp. 8874
Author(s):  
Masaki Yagami ◽  
Masanori Ichinohe ◽  
Junji Tamura

This paper proposes a novel control method for enhancing transient stability by using renewable energy sources (RES). The kinetic energy accumulated in a rotor of variable speed wind generator (VSWG) is proactively used as the active power source, which is controlled according to the frequency measured at the wind farm. In addition, coordinated reactive power control according to the grid voltage is also carried out to more effectively use the kinetic energy of the VSWG. The effects of the proposed control system were evaluated by simulation analyses performed using a modified IEEE nine-bus power system network made up of synchronous generators (SGs), a photovoltaic (PV) system and a VSWG-based wind farm. Furthermore, the coordinated reactive power control between the VSWG and PV system was also demonstrated.


Energies ◽  
2014 ◽  
Vol 7 (5) ◽  
pp. 3086-3103 ◽  
Author(s):  
Bin Zhao ◽  
Hui Li ◽  
Mingyu Wang ◽  
Yaojun Chen ◽  
Shengquan Liu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1677 ◽  
Author(s):  
Ying Wang ◽  
Youbin Zhou ◽  
Dahu Li ◽  
Dejun Shao ◽  
Kan Cao ◽  
...  

Voltage source converter-based high-voltage direct current (VSC-HVDC) has the advantage of fast and independent controllability on active and reactive power. This paper focuses on effects of commonly proposed reactive power control modes, constant reactive power control and AC voltage margin control. Based on the mathematical model of single machine infinity equivalent system with embedded VSC-HVDC, the influence of VSC-HVDC with different reactive power control strategies on transient stability and dynamic stability of the AC system is studied. Then case studies were conducted with a realistic model of grid. The dynamic responses of AC/DC systems for different VSC-HVDC reactive power control modes were compared in detail. It is shown that compared to constant reactive power control, AC voltage margin control can provide voltage support to enhance the transient angle stability of an AC system. However, the fluctuant reactive power injected into a weak AC system may adversely affect power system oscillation damping for VSC-HVDC with AC voltage margin control, if the parameters of the controller have not been optimized to suppress the low-frequency oscillation. The results of this paper can provide certain reference for the decision of an appropriate VSC-HVDC reactive power control mode in practice.


Sign in / Sign up

Export Citation Format

Share Document