A novel real-coded population-based extremal optimization algorithm with polynomial mutation: A non-parametric statistical study on continuous optimization problems

2016 ◽  
Vol 174 ◽  
pp. 577-587 ◽  
Author(s):  
Li-Min Li ◽  
Kang-Di Lu ◽  
Guo-Qiang Zeng ◽  
Lie Wu ◽  
Min-Rong Chen
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Amir Shabani ◽  
Behrouz Asgarian ◽  
Saeed Asil Gharebaghi ◽  
Miguel A. Salido ◽  
Adriana Giret

In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.


2018 ◽  
Vol 3 (1) ◽  
pp. 48 ◽  
Author(s):  
Ahmet Cevahir Cinar ◽  
Hazim Iscan ◽  
Mustafa Servet Kiran

Population-based swarm or evolutionary computation algorithms in optimization are attracted the interest of the researchers due their simple structure, optimization performance, easy-adaptation. Binary optimization problems can be also solved by using these algorithms. This paper focuses on solving large scale binary optimization problems by using Tree-Seed Algorithm (TSA) proposed for solving continuous optimization problems by imitating relationship between the trees and their seeds in nature. The basic TSA is modified by using xor logic gate for solving binary optimization problems in this study. In order to investigate the performance of the proposed algorithm, the numeric benchmark problems with the different dimensions are considered and obtained results show that the proposed algorithm produces effective and comparable solutions in terms of solution quality.Keywords: binary optimization, tree-seed algorithm, xor-gate, large-scale optimization


2021 ◽  
Vol 12 (3) ◽  
pp. 44-61
Author(s):  
Ankit Kumar Nikum

Rao algorithms are population-based metaphor-less optimization algorithms. Rao algorithms consist of three algorithms characterized by three mathematical equations. These algorithms use the characteristics of the best and worst solution to modify the current population along with some characteristics of a random solution. These algorithms are found to be very efficient for continuous optimization problems. In this paper, efforts are made to convert Rao 1 algorithm to its discrete form. This paper proposes three techniques for converting these continuous Rao algorithms to their discrete form. One of the techniques is based on swap operator used for transforming PSO to discrete PSO, and the other two techniques are based on two novel mutating techniques. The algorithms are applied to symmetric TSP problems, and the results are compared with different state of the art algorithms, including discrete bat algorithm (DBA), discrete cuckoo search (DCS), ant colony algorithm, and GA. The results of Rao algorithms are highly competitive compared to the rest of the algorithms


2012 ◽  
Vol 490-495 ◽  
pp. 66-70
Author(s):  
Yang Nan

Ant colony optimization has been become a very useful method for combination optimization problems. Based on close connections between combination optimization and continuous optimization, nowadays some scholars have studied to apply ant colony optimization to continuous optimization problems, and proposed some continuous ant colony optimizations. To improve the performance of those continuous ant colony optimizations, here the principles of evolutionary algorithm and artificial immune algorithm have been combined with the typical continuous Ant Colony Optimization, and the adaptive Cauchi mutation and thickness selection are used to operate the ant individual, so a new Immunized Ant Colony Optimization is proposed.


2016 ◽  
Vol 330 ◽  
pp. 49-73 ◽  
Author(s):  
Guo-Qiang Zeng ◽  
Jie Chen ◽  
Li-Min Li ◽  
Min-Rong Chen ◽  
Lie Wu ◽  
...  

Author(s):  
Peter Bamidele Shola ◽  
L B Asaju

<p>Optimization problem is one such problem commonly encountered in many area of endeavor, obviously due to the need to economize the use of the available resources in many problems. This paper presents a population-based meta-heuristic algorithm   for solving optimization problems in a continous space. The algorithm, combines a form of cross-over technique with a position updating formula based on the instantaneous global best position to update each particle position .The algorithm was tested and compared with the standard particle swarm optimization (PSO)  on many benchmark functions. The result suggests a better performance of the algorithm over the later in terms of reaching (attaining) the global optimum value (at least for those benchmark functions considered) and the rate of convergence in terms of the number of iterations required reaching the optimum values.</p>


Sign in / Sign up

Export Citation Format

Share Document