Fuzzy controller applied to electric vehicles with continuously variable transmission

2016 ◽  
Vol 214 ◽  
pp. 684-691 ◽  
Author(s):  
Marcelo A.C. Fernandes
2019 ◽  
Vol 9 (10) ◽  
pp. 2074 ◽  
Author(s):  
Hangyang Li ◽  
Yunshan Zhou ◽  
Huanjian Xiong ◽  
Bing Fu ◽  
Zhiliang Huang

The energy management strategy has a great influence on the fuel economy of hybrid electric vehicles, and the equivalent consumption minimization strategy (ECMS) has proved to be a useful tool for the real-time optimal control of Hybrid Electric Vehicles (HEVs). However, the adaptation of the equivalent factor poses a major challenge in order to obtain optimal fuel consumption as well as robustness to varying driving cycles. In this paper, an adaptive-ECMS based on driving pattern recognition (DPR) is established for hybrid electric vehicles with continuously variable transmission. The learning vector quantization (LVQ) neural network model was adopted for the on-line DPR algorithm. The influence of the battery state of charge (SOC) on the optimal equivalent factor was studied under different driving patterns. On this basis, a method of adaptation of the equivalent factor was proposed by considering the type of driving pattern and the battery SOC. Besides that, in order to enhance drivability, penalty terms were introduced to constrain frequent engine on/off events and large variations of the continuously variable transmission (CVT) speed ratio. Simulation results showed that the proposed method efficiently improved the equivalent fuel consumption with charge-sustaining operations and also took into account driving comfort.


Author(s):  
Jian Dong ◽  
Zuomin Dong ◽  
Curran Crawford

In this paper, a review of the state-of-the-art of various CVT powertrain systems now used or being planned for future use in HEVs is presented. These CVT powertrain systems are classified into three main categories: mechanical CVT, electromechanical CVT (ECVT) and pure electrical CVT (EVT). The research development, system architecture, operation characteristics and the merits and drawbacks of each type are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Yueqiao Chen ◽  
Ka In Wong

Van Doorne’s continuously variable transmission (CVT) is the most popular CVT design for automotive transmission, but it is only applicable to low-power passenger cars because of its low torque capacity. To overcome this limitation of traditional single-belt CVT, a novel dual-belt Van Doorne’s CVT (DBVCVT) system, which is applicable to heavy-duty vehicles, has been previously proposed by the authors. This paper, based on the published analytical model and test rig of DBVCVT, further proposes an intelligent multiobjective fuzzy controller for slip and speed ratio control of DBVCVT. The controller aims to safely control the clamping forces of both the primary and the secondary pulleys in order to improve the transmission efficiency, achieve the accurate speed ratio, and avoid the belt slip under different engine loads and vehicle speeds. The slip, speed ratio, and transmission efficiency dynamics of DBVCVT are firstly analyzed and modeled in this paper. With the aid of a flexible objective function, the analytical model, and fuzzy logic, a Pareto rule base for fuzzy controller is developed for multiobjective DBVCVT control. Experimental results show that the proposed controller for slip and speed ratio regulation of DBVCVT is effective and performs well under different user-defined weights.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401882481 ◽  
Author(s):  
Hangyang Li ◽  
Xiaolan Hu ◽  
Bing Fu ◽  
Jiande Wang ◽  
Feitie Zhang ◽  
...  

Hybrid electric vehicles equipped with continuously variable transmission show dramatic improvements in fuel economy and driving performance because they can continuously adjust the operating points of the power source. This article proposes an optimal control strategy for continuously variable transmission–based hybrid electric vehicles with a pre-transmission parallel configuration. To explore the fuel-saving potential of the given configuration, a ‘control-oriented’ quasi-static vehicle model is built, and dynamic programming is adopted to determine the optimal torque split factor and continuously variable transmission speed ratio. However, a single-criterion cost function will lead to undesirable drivability problems. To tackle this problem, the main factors affecting the driving performance of a continuously variable transmission–based hybrid electric vehicle are studied. On that basis, a multicriterion cost function is proposed by introducing drivability constraints. By varying the weighting factors, the trade-off between fuel economy and drivability can be evaluated under a predetermined driving cycle. To validate the effectiveness of the proposed method, simulation experiments are performed under four different driving cycles, and the results indicate that the proposed method greatly enhanced the drivability without significantly increasing fuel consumption. Compared to a single-criterion cost function, the use of multiple criteria is more representative of real-world driving behaviour and thus provides better reference solutions to evaluate suboptimal online controllers.


Sign in / Sign up

Export Citation Format

Share Document