A 19MFLIPS CMOS fuzzy controller to control continuously variable transmission ratio

Author(s):  
Ali Naderi ◽  
Mortaza Aliasghary ◽  
Alireza Pourazar ◽  
Hadi Ghasemzadeh
2017 ◽  
Vol 7 (3) ◽  
pp. 127
Author(s):  
Izhari Izmi Mazali ◽  
Kamarul Baharin Tawi ◽  
Bambang Supriyo ◽  
Nurulakmar Abu Husain ◽  
Mohd Salman Che Kob ◽  
...  

2014 ◽  
Vol 952 ◽  
pp. 249-252
Author(s):  
Wu Zhang ◽  
Wei Guo ◽  
Fa Rong Kou ◽  
Yi Zhi Yang

Pulley strain aggravated whole-Part abrasion, affected friction and lubricates state of metal belt continuously variable transmission. Pulley strain was analyzed by analytical method and finite element analysis. The results indicate that with the increase of transmission ratio, the driver pulley compressive strain is increases after reduces for a while, and the driven pulley increase. Compressive strain dense when radius is lesser and vice versa. Two methods results are basically the same, whereby demonstrating that the model is rational and that the analysis results are reliable.


2020 ◽  
Author(s):  
Chao Li ◽  
Xiuquan Cao ◽  
Qing-tao Li

Abstract In the existing traction continuously variable transmission (CVT), half toroidal CVT (HT-CVT) is considered to have a better traction performance. However, the HT-CVT has the spin losses due to its structural limitations, which significantly influences the traction efficiency. In this paper, the kinematic qualities and contact models of a novel zero-spin rolling conical CVT (RC-CVT) are studied, and then the rollers and conical disks are compactly designed through the proposed design principles. Subsequently, the transmission efficiency is investigated by using a detailed numerical model and compared with HT-CVT. Based on these computational models and parameters, the practical spin ratio, spin momentum and traction efficiency of RC-CVT are calculated and compared with HT-CVT. The results show that the practical spin ratio and spin momentum of RC-CVT are much smaller than that of HT-CVT, and the efficiency on fixed transmission ratio is consequently higher than that of HT-CVT.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Yueqiao Chen ◽  
Ka In Wong

Van Doorne’s continuously variable transmission (CVT) is the most popular CVT design for automotive transmission, but it is only applicable to low-power passenger cars because of its low torque capacity. To overcome this limitation of traditional single-belt CVT, a novel dual-belt Van Doorne’s CVT (DBVCVT) system, which is applicable to heavy-duty vehicles, has been previously proposed by the authors. This paper, based on the published analytical model and test rig of DBVCVT, further proposes an intelligent multiobjective fuzzy controller for slip and speed ratio control of DBVCVT. The controller aims to safely control the clamping forces of both the primary and the secondary pulleys in order to improve the transmission efficiency, achieve the accurate speed ratio, and avoid the belt slip under different engine loads and vehicle speeds. The slip, speed ratio, and transmission efficiency dynamics of DBVCVT are firstly analyzed and modeled in this paper. With the aid of a flexible objective function, the analytical model, and fuzzy logic, a Pareto rule base for fuzzy controller is developed for multiobjective DBVCVT control. Experimental results show that the proposed controller for slip and speed ratio regulation of DBVCVT is effective and performs well under different user-defined weights.


Author(s):  
Romeo P. Glovnea ◽  
Ovidiu S. Cretu

The paper focuses on the internal construction of an original Constant Power Continuously Variable Transmission (CP-CVT). In a recent publication the authors have introduced the fundamentals of the kinematics and dynamics of the CP-CVT. The present study focuses on the optimisation of the CP-CVT’s internal geometry and the size of its active elements in order to obtain maximum power transmitted with least variation over a range of transmission ratio. The paper concludes that for a specific geometry the CP-CVT presented offers promising characteristics that recommend it as a good candidate in the race of developing a new generation of the automobiles’ powertrain.


Sign in / Sign up

Export Citation Format

Share Document