Combining active learning and local patch alignment for data-driven facial animation with fine-grained local detail

2020 ◽  
Vol 398 ◽  
pp. 431-441
Author(s):  
Jian Zhang ◽  
Guihua Liao ◽  
Na Li
2016 ◽  
Vol 57 ◽  
pp. 1-20 ◽  
Author(s):  
Jian Zhang ◽  
Jun Yu ◽  
Jane You ◽  
Dapeng Tao ◽  
Na Li ◽  
...  

2021 ◽  
Vol 22 ◽  
pp. 32
Author(s):  
Agathe Reille ◽  
Victor Champaney ◽  
Fatima Daim ◽  
Yves Tourbier ◽  
Nicolas Hascoet ◽  
...  

Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.


2020 ◽  
Vol 34 (07) ◽  
pp. 12047-12054
Author(s):  
Guolei Sun ◽  
Hisham Cholakkal ◽  
Salman Khan ◽  
Fahad Khan ◽  
Ling Shao

The main requisite for fine-grained recognition task is to focus on subtle discriminative details that make the subordinate classes different from each other. We note that existing methods implicitly address this requirement and leave it to a data-driven pipeline to figure out what makes a subordinate class different from the others. This results in two major limitations: First, the network focuses on the most obvious distinctions between classes and overlooks more subtle inter-class variations. Second, the chance of misclassifying a given sample in any of the negative classes is considered equal, while in fact, confusions generally occur among only the most similar classes. Here, we propose to explicitly force the network to find the subtle differences among closely related classes. In this pursuit, we introduce two key novelties that can be easily plugged into existing end-to-end deep learning pipelines. On one hand, we introduce “diversification block” which masks the most salient features for an input to force the network to use more subtle cues for its correct classification. Concurrently, we introduce a “gradient-boosting” loss function that focuses only on the confusing classes for each sample and therefore moves swiftly along the direction on the loss surface that seeks to resolve these ambiguities. The synergy between these two blocks helps the network to learn more effective feature representations. Comprehensive experiments are performed on five challenging datasets. Our approach outperforms existing methods using similar experimental setting on all five datasets.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1986
Author(s):  
Liguo Yao ◽  
Haisong Huang ◽  
Kuan-Wei Wang ◽  
Shih-Huan Chen ◽  
Qiaoqiao Xiong

Manufacturing text often exists as unlabeled data; the entity is fine-grained and the extraction is difficult. The above problems mean that the manufacturing industry knowledge utilization rate is low. This paper proposes a novel Chinese fine-grained NER (named entity recognition) method based on symmetry lightweight deep multinetwork collaboration (ALBERT-AttBiLSTM-CRF) and model transfer considering active learning (MTAL) to research fine-grained named entity recognition of a few labeled Chinese textual data types. The method is divided into two stages. In the first stage, the ALBERT-AttBiLSTM-CRF was applied for verification in the CLUENER2020 dataset (Public dataset) to get a pretrained model; the experiments show that the model obtains an F1 score of 0.8962, which is better than the best baseline algorithm, an improvement of 9.2%. In the second stage, the pretrained model was transferred into the Manufacturing-NER dataset (our dataset), and we used the active learning strategy to optimize the model effect. The final F1 result of Manufacturing-NER was 0.8931 after the model transfer (it was higher than 0.8576 before the model transfer); so, this method represents an improvement of 3.55%. Our method effectively transfers the existing knowledge from public source data to scientific target data, solving the problem of named entity recognition with scarce labeled domain data, and proves its effectiveness.


2019 ◽  
Vol 35 (5) ◽  
pp. 1071-1083 ◽  
Author(s):  
Ian Abraham ◽  
Todd D. Murphey
Keyword(s):  

2020 ◽  
Vol 12 (12) ◽  
pp. 2001 ◽  
Author(s):  
Libin Jiao ◽  
Lianzhi Huo ◽  
Changmiao Hu ◽  
Ping Tang

Formulated as a pixel-level labeling task, data-driven neural segmentation models for cloud and corresponding shadow detection have achieved a promising accomplishment in remote sensing imagery processing. The limited capability of these methods to delineate the boundaries of clouds and shadows, however, is still referred to as a central issue of precise cloud and shadow detection. In this paper, we focus on the issue of rough cloud and shadow location and fine-grained boundary refinement of clouds on the dataset of Landsat8 OLI and therefore propose the Refined UNet to achieve this goal. To this end, a data-driven UNet-based coarse prediction and a fully-connected conditional random field (Dense CRF) are concatenated to achieve precise detection. Specifically, the UNet network with adaptive weights of balancing categories is trained from scratch, which can locate the clouds and cloud shadows roughly, while correspondingly the Dense CRF is employed to refine the cloud boundaries. Eventually, Refined UNet can give cloud and shadow proposals sharper and more precisely. The experiments and results illustrate that our model can propose sharper and more precise cloud and shadow segmentation proposals than the ground truths do. Additionally, evaluations on the Landsat 8 OLI imagery dataset of Blue, Green, Red, and NIR bands illustrate that our model can be applied to feasibly segment clouds and shadows on the four-band imagery data.


2022 ◽  
Vol 163 ◽  
pp. 108106
Author(s):  
Jingwen Song ◽  
Pengfei Wei ◽  
Marcos A. Valdebenito ◽  
Matthias Faes ◽  
Michael Beer

2020 ◽  
Vol 34 (09) ◽  
pp. 13622-13623
Author(s):  
Zhaojiang Lin ◽  
Peng Xu ◽  
Genta Indra Winata ◽  
Farhad Bin Siddique ◽  
Zihan Liu ◽  
...  

We present CAiRE, an end-to-end generative empathetic chatbot designed to recognize user emotions and respond in an empathetic manner. Our system adapts the Generative Pre-trained Transformer (GPT) to empathetic response generation task via transfer learning. CAiRE is built primarily to focus on empathy integration in fully data-driven generative dialogue systems. We create a web-based user interface which allows multiple users to asynchronously chat with CAiRE. CAiRE also collects user feedback and continues to improve its response quality by discarding undesirable generations via active learning and negative training.


Sign in / Sign up

Export Citation Format

Share Document