Low-rank tensor completion via combined non-local self-similarity and low-rank regularization

2019 ◽  
Vol 367 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-Tong Li ◽  
Xi-Le Zhao ◽  
Tai-Xiang Jiang ◽  
Yu-Bang Zheng ◽  
Teng-Yu Ji ◽  
...  
Author(s):  
Tianheng Zhang ◽  
Jianli Zhao ◽  
Qiuxia Sun ◽  
Bin Zhang ◽  
Jianjian Chen ◽  
...  

2019 ◽  
Vol 73 ◽  
pp. 62-69 ◽  
Author(s):  
Wen-Hao Xu ◽  
Xi-Le Zhao ◽  
Teng-Yu Ji ◽  
Jia-Qing Miao ◽  
Tian-Hui Ma ◽  
...  

Author(s):  
Jize Xue ◽  
Yongqiang Zhao ◽  
Shaoguang Huang ◽  
Wenzhi Liao ◽  
Jonathan Cheung-Wai Chan ◽  
...  

2020 ◽  
Vol 31 (11) ◽  
pp. 4567-4581 ◽  
Author(s):  
Jize Xue ◽  
Yongqiang Zhao ◽  
Wenzhi Liao ◽  
Jonathan Cheung-Wai Chan ◽  
Seong G. Kong

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jinzhi Liao ◽  
Jiuyang Tang ◽  
Xiang Zhao ◽  
Haichuan Shang

POI recommendation finds significant importance in various real-life applications, especially when meeting with location-based services, e.g., check-ins social networks. In this paper, we propose to solve POI recommendation through a novel model of dynamic tensor, which is among the first triumphs of its kind. In order to carry out timely recommendation, we predict POI by utilizing a completion algorithm based on fast low-rank tensor. Particularly, the dynamic tensor structure is complemented by the fast low-rank tensor completion algorithm so as to achieve prediction with better performance, where the parameter optimization is achieved by a pigeon-inspired heuristic algorithm. In short, our POI recommendation via the dynamic tensor method can take advantage of the intrinsic characteristics of check-ins data due to the multimode features such as current categories, subsequent categories, and temporal information as well as seasons variations are all integrated into the model. Extensive experiment results not only validate the superiority of our proposed method but also imply the application prospect in large-scale and real-time POI recommendation environment.


2020 ◽  
Vol 12 (18) ◽  
pp. 2979
Author(s):  
Le Sun ◽  
Chengxun He ◽  
Yuhui Zheng ◽  
Songze Tang

During the process of signal sampling and digital imaging, hyperspectral images (HSI) inevitably suffer from the contamination of mixed noises. The fidelity and efficiency of subsequent applications are considerably reduced along with this degradation. Recently, as a formidable implement for image processing, low-rank regularization has been widely extended to the restoration of HSI. Meanwhile, further exploration of the non-local self-similarity of low-rank images are proven useful in exploiting the spatial redundancy of HSI. Better preservation of spatial-spectral features is achieved under both low-rank and non-local regularizations. However, existing methods generally regularize the original space of HSI, the exploration of the intrinsic properties in subspace, which leads to better denoising performance, is relatively rare. To address these challenges, a joint method of subspace low-rank learning and non-local 4-d transform filtering, named SLRL4D, is put forward for HSI restoration. Technically, the original HSI is projected into a low-dimensional subspace. Then, both spectral and spatial correlations are explored simultaneously by imposing low-rank learning and non-local 4-d transform filtering on the subspace. The alternating direction method of multipliers-based algorithm is designed to solve the formulated convex signal-noise isolation problem. Finally, experiments on multiple datasets are conducted to illustrate the accuracy and efficiency of SLRL4D.


Sign in / Sign up

Export Citation Format

Share Document