scholarly journals A Survey on Egocentric Vision-based Action Recognition

2021 ◽  
Author(s):  
Adrián Núñez-Marcos ◽  
Gorka Azkune ◽  
Ignacio Arganda-Carreras
Author(s):  
Dima Damen ◽  
Hazel Doughty ◽  
Giovanni Maria Farinella ◽  
Antonino Furnari ◽  
Evangelos Kazakos ◽  
...  

AbstractThis paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.


2013 ◽  
Vol 18 (2-3) ◽  
pp. 49-60 ◽  
Author(s):  
Damian Dudzńiski ◽  
Tomasz Kryjak ◽  
Zbigniew Mikrut

Abstract In this paper a human action recognition algorithm, which uses background generation with shadow elimination, silhouette description based on simple geometrical features and a finite state machine for recognizing particular actions is described. The performed tests indicate that this approach obtains a 81 % correct recognition rate allowing real-time image processing of a 360 X 288 video stream.


2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

2019 ◽  
Author(s):  
Giacomo De Rossi ◽  
◽  
Nicola Piccinelli ◽  
Francesco Setti ◽  
Riccardo Muradore ◽  
...  

2011 ◽  
Vol 31 (2) ◽  
pp. 406-409 ◽  
Author(s):  
Ying-jie LI ◽  
Yi-xin YIN ◽  
Fei DENG

ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 745 ◽  
Author(s):  
Bin WANG ◽  
Yuanyuan WANG ◽  
Wenhua XIAO ◽  
Wei WANG ◽  
Maojun ZHANG

Author(s):  
Rajat Khurana ◽  
Alok Kumar Singh Kushwaha

Background & Objective: Identification of human actions from video has gathered much attention in past few years. Most of the computer vision tasks such as Health Care Activity Detection, Suspicious Activity detection, Human Computer Interactions etc. are based on the principle of activity detection. Automatic labelling of activity from videos frames is known as activity detection. Motivation of this work is to use most out of the data generated from sensors and use them for recognition of classes. Recognition of actions from videos sequences is a growing field with the upcoming trends of deep neural networks. Automatic learning capability of Convolutional Neural Network (CNN) make them good choice as compared to traditional handcrafted based approaches. With the increasing demand of RGB-D sensors combination of RGB and depth data is in great demand. This work comprises of the use of dynamic images generated from RGB combined with depth map for action recognition purpose. We have experimented our approach on pre trained VGG-F model using MSR Daily activity dataset and UTD MHAD Dataset. We achieve state of the art results. To support our research, we have calculated different parameters apart from accuracy such as precision, F score, recall. Conclusion: Accordingly, the investigation confirms improvement in term of accuracy, precision, F-Score and Recall. The proposed model is 4 Stream model is prone to occlusion, used in real time and also the data from the RGB-D sensor is fully utilized.


2020 ◽  
Vol 52 (1) ◽  
pp. 187-220
Author(s):  
Maryam Koohzadi ◽  
Nasrollah Moghadam Charkari
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document