Neural oscillations associated with the primacy and recency effects of verbal working memory

2010 ◽  
Vol 473 (3) ◽  
pp. 172-177 ◽  
Author(s):  
Massoud Stephane ◽  
Nuri F. Ince ◽  
Michael Kuskowski ◽  
Arthur Leuthold ◽  
Ahmed H. Tewfik ◽  
...  
2012 ◽  
Vol 43 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Massoud Stephane ◽  
Arthur Leuthold ◽  
Michael Kuskowski ◽  
Kate McClannahan ◽  
Tinting Xu

2020 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Ashley Merkin ◽  
Nigel C Rogasch ◽  
Michael C Ridding ◽  
...  

AbstractAs working memory (WM) is limited in capacity, it is important to direct neural resources towards processing task-relevant information while ignoring distractors. Neural oscillations in the alpha frequency band (8-12 Hz) have been suggested to play a role in the inhibition of task-irrelevant information during WM, although results are mixed, possibly due to differences in the type of WM task employed. Here, we examined the role of alpha power in inhibition of anticipated distractors of varying strength using a modified Sternberg task where the encoding and retention periods were temporally separated. We recorded EEG while 20 young adults completed the task and found: 1) slower reaction times in strong distractor trials compared to weak distractor trials; 2) increased alpha power in posterior regions from baseline prior to presentation of a distractor regardless of condition; and 3) no differences in alpha power between strong and weak distractor conditions. Our results suggest that parieto-occipital alpha power is increased prior to a distractor. However we could not find evidence that alpha power is further modulated by distractor strength.


Author(s):  
Jörg-Tobias Kuhn ◽  
Elena Ise ◽  
Julia Raddatz ◽  
Christin Schwenk ◽  
Christian Dobel

Abstract. Objective: Deficits in basic numerical skills, calculation, and working memory have been found in children with developmental dyscalculia (DD) as well as children with attention-deficit/hyperactivity disorder (ADHD). This paper investigates cognitive profiles of children with DD and/or ADHD symptoms (AS) in a double dissociation design to obtain a better understanding of the comorbidity of DD and ADHD. Method: Children with DD-only (N = 33), AS-only (N = 16), comorbid DD+AS (N = 20), and typically developing controls (TD, N = 40) were assessed on measures of basic numerical processing, calculation, working memory, processing speed, and neurocognitive measures of attention. Results: Children with DD (DD, DD+AS) showed deficits in all basic numerical skills, calculation, working memory, and sustained attention. Children with AS (AS, DD+AS) displayed more selective difficulties in dot enumeration, subtraction, verbal working memory, and processing speed. Also, they generally performed more poorly in neurocognitive measures of attention, especially alertness. Children with DD+AS mostly showed an additive combination of the deficits associated with DD-only and A_Sonly, except for subtraction tasks, in which they were less impaired than expected. Conclusions: DD and AS appear to be related to largely distinct patterns of cognitive deficits, which are present in combination in children with DD+AS.



2012 ◽  
Author(s):  
Klaus Oberauer ◽  
Stephan Lewandowsky

2007 ◽  
Author(s):  
Christelle Robert ◽  
Delphine Fagot ◽  
Thierry Lecerf ◽  
Anik de Ribaupierre

2009 ◽  
Author(s):  
Klaus Oberauer ◽  
Stephan Lewandowsky

2020 ◽  
Author(s):  
Nachshon Korem ◽  
Orly Rubinsten

Current evidence suggests that math anxiety and working memory govern math performance. However, these conclusions are largely based on simple correlations, without considering these variables as a network or examining correlations at the latent variables level. Thus, questions remain regarding the role of the unique and shared variance between math anxiety, working memory and math performance. The purpose of the current study was to (i) uncover the underlying relationships between the variables to understand the unique contribution of each element to the network; (ii) measure the shared variance and identify the interactions between affect and cognition that control math performance. Our analytical approach involved both network analysis approach and structural equation modeling, with a sample of 116 female students.Results show that math anxiety and working memory affect math performance by different mechanisms. Only working memory tests that included numeric information were correlated to math anxiety. Each of the various working memory tasks correlated differently to math performance: working memory as a single latent variable was a better predictor of math performance than visuospatial and verbal working memory as two separate latent variables. Overall, both working memory and math anxiety affect math performance. Working memory tasks that include numeric information can affect performance in math anxious individuals.


Sign in / Sign up

Export Citation Format

Share Document