scholarly journals Group II metabotropic glutamate receptors in the striatum of non-human primates: Dysregulation following chronic cocaine self-administration

2011 ◽  
Vol 496 (1) ◽  
pp. 15-19 ◽  
Author(s):  
T.J.R. Beveridge ◽  
H.R. Smith ◽  
M.A. Nader ◽  
L.J. Porrino
2000 ◽  
Vol 84 (2) ◽  
pp. 759-770 ◽  
Author(s):  
Volker Neugebauer ◽  
Fatiha Zinebi ◽  
Rex Russell ◽  
Joel P. Gallagher ◽  
Patricia Shinnick-Gallagher

G-protein-coupled metabotropic glutamate receptors (mGluRs) are being implicated in various forms of neuroplasticity and CNS disorders. This study examined whether the sensitivities of mGluR agonists are modulated in a distinct fashion in different models of synaptic plasticity, specifically, kindling and chronic cocaine treatment. The influence of kindling and chronic cocaine exposure in vivo was examined in vitro on the modulation of synaptic transmission by group II and III metabotropic glutamate receptors using whole cell voltage-clamp recordings of central amygdala (CeA) neurons. Synaptic transmission was evoked by electrical stimulation of the basolateral amygdala (BLA) and ventral amygdaloid pathway (VAP) afferents in brain slices from control rats and from rats treated with cocaine or exposed to three to five stage-five kindled seizures. This study shows that after chemical stimulation with chronic cocaine exposure or after electrical stimulation with kindling the receptor sensitivities for mGluR agonists are altered in opposite ways. In slices from control rats, group II agonists, (2S,1′S,2′S)-2-(carboxycyclopropyl)glycine (LCCG1) and (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), depressed neurotransmission more potently at the BLA-CeA than at the VAP-CeA synapse while group III agonist, L(+)-2-amino-4-phosphonobutyrate (LAP4), depressed neurotransmission more potently at the VAP-CeA synapse than at the BLA-CeA. These agonist actions were not seen (were absent) in amygdala neurons from chronic cocaine-treated animals. In contrast, after kindling, concentration response relationships for LCCG1 and LAP4 were shifted to the left, suggesting that sensitivity to these agonists is increased. Except at high concentrations, LCCG1, LY354740, and LAP4 neither induced membrane currents nor changed current-voltage relationships. Loss of mGluR inhibition with chronic cocaine treatment may contribute to counter-adaptive changes including anxiety and depression in cocaine withdrawal. Drugs that restore the inhibitory effects of group II and III mGluRs may be novel tools in the treatment of cocaine dependence. The enhanced sensitivity to group II and III mGluR agonists in kindling is similar to that recorded at the lateral to BLA synapse in the amygdala where they reduce epileptiform bursting. These findings suggest that drugs modifying mGluRs may prove useful in the treatment of cocaine withdrawal or epilepsy.


2014 ◽  
Vol 10 ◽  
pp. 1744-8069-10-68 ◽  
Author(s):  
Magda Zammataro ◽  
Maria Angela Sortino ◽  
Carmela Parenti ◽  
Robert W Gereau ◽  
Santina Chiechio

2006 ◽  
Vol 19 (2) ◽  
pp. 131 ◽  
Author(s):  
Chang Mo Kim ◽  
Jeong Il Choi ◽  
Hong Beom Bae ◽  
Seok Jai Kim ◽  
Sung Tae Chung ◽  
...  

2013 ◽  
Vol 109 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Jessica L. Hauser ◽  
Eleanore B. Edson ◽  
Bryan M. Hooks ◽  
Chinfei Chen

Over the first few postnatal weeks, extensive remodeling occurs at the developing murine retinogeniculate synapse, the connection between retinal ganglion cells (RGCs) and the visual thalamus. Although numerous studies have described the role of activity in the refinement of this connection, little is known about the mechanisms that regulate glutamate concentration at and around the synapse over development. Here we show that interactions between glutamate transporters and metabotropic glutamate receptors (mGluRs) dynamically control the peak and time course of the excitatory postsynaptic current (EPSC) at the immature synapse. Inhibiting glutamate transporters by bath application of TBOA (dl- threo-β-benzyloxyaspartic acid) prolonged the decay kinetics of both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) currents at all ages. Moreover, at the immature synapse, TBOA-induced increases in glutamate concentration led to the activation of group II/III mGluRs and a subsequent reduction in neurotransmitter release at RGC terminals. Inhibition of this negative-feedback mechanism resulted in a small but significant increase in peak NMDAR EPSCs during basal stimulation and a substantial increase in the peak with coapplication of TBOA. Activation of mGluRs also shaped the synaptic response during high-frequency trains of stimulation that mimic spontaneous RGC activity. At the mature synapse, however, the group II mGluRs and the group III mGluR7-mediated response are downregulated. Our results suggest that transporters reduce spillover of glutamate, shielding NMDARs and mGluRs from the neurotransmitter. Furthermore, mechanisms of glutamate clearance and release interact dynamically to control the glutamate transient at the developing retinogeniculate synapse.


Sign in / Sign up

Export Citation Format

Share Document