cocaine exposure
Recently Published Documents


TOTAL DOCUMENTS

979
(FIVE YEARS 83)

H-INDEX

60
(FIVE YEARS 4)

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Clara Cestonaro ◽  
Lorenzo Menozzi ◽  
Claudio Terranova

Illicit drug use is a global problem that also affects pregnant women. Substance use and alcohol abuse during pregnancy may have various harmful consequences for both mothers and foetuses. Intrauterine exposure to illicit substances can be investigated through maternal reports and toxicological tests on mothers’ and/or newborns’ samples. While the negative effects of alcohol and opioid use on pregnancy, the foetus, and/or newborn are well established, the effects of cocaine use remain controversial. We performed a review of the literature to evaluate the current state of knowledge of the effects of intrauterine cocaine exposure on newborns’ and children’s long-term development and to highlight possible implications for health professionals dealing with women who use cocaine during pregnancy. Although intrauterine cocaine exposure has been associated with reduced infant measurements, no specific amount of cocaine use exerting such effects has been determined, and no long-term effects have been confirmed. The evidence of cocaine use during pregnancy justifies a clinical and social takeover of the mother and newborn without assuming that there will certainly be long-term damage related to intrauterine cocaine exposure, but also considering other possible associated factors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gregg Wildenberg ◽  
Anastasia Sorokina ◽  
Jessica Koranda ◽  
Alexis Monical ◽  
Chad Heer ◽  
...  

Dopaminergic (DA) neurons exert profound influences on behavior including addiction. However, how DA axons communicate with target neurons and how those communications change with drug exposure remains poorly understood. We leverage cell type-specific labeling with large volume serial electron microscopy to detail DA connections in the nucleus accumbens (NAc) of the mouse (Mus musculus) before and after exposure to cocaine. We find that individual DA axons contain different varicosity types based on their vesicle contents. Spatially ordering along individual axons further suggests that varicosity types are non-randomly organized. DA axon varicosities rarely make specific synapses (<2%, 6/410), but instead are more likely to form spinule-like structures (15%, 61/410) with neighboring neurons. Days after a brief exposure to cocaine, DA axons were extensively branched relative to controls, formed blind-ended ‘bulbs’ filled with mitochondria, and were surrounded by elaborated glia. Finally, mitochondrial lengths increased by ~2.2 times relative to control only in DA axons and NAc spiny dendrites after cocaine exposure. We conclude that DA axonal transmission is unlikely to be mediated via classical synapses in the NAc and that the major locus of anatomical plasticity of DA circuits after exposure to cocaine are large-scale axonal re-arrangements with correlated changes in mitochondria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Spencer B. Huggett ◽  
Jeffrey S. Hatfield ◽  
Joshua D. Walters ◽  
John E. McGeary ◽  
Justine W. Welsh ◽  
...  

AbstractCocaine use presents a worldwide public health problem with high socioeconomic cost. No current pharmacologic treatments are available for cocaine use disorder (CUD) or cocaine toxicity. To explore pharmaceutical treatments for tthis disorder and its sequelae we analyzed gene expression data from post-mortem brain tissue of individuals with CUD who died from cocaine-related causes with matched cocaine-free controls (n = 71, Mage = 39.9, 100% male, 49% with CUD, 3 samples/brain regions). To match molecular signatures from brain pathology with potential therapeutics, we leveraged the L1000 database honing in on neuronal mRNA profiles of 825 repurposable compounds (e.g., FDA approved). We identified 16 compounds that were negatively associated with CUD gene expression patterns across all brain regions (padj < 0.05), all of which outperformed current targets undergoing clinical trials for CUD (all padj > 0.05). An additional 43 compounds were positively associated with CUD expression. We performed an in silico follow-up potential therapeutics using independent transcriptome-wide in vitro (neuronal cocaine exposure; n = 18) and in vivo (mouse cocaine self-administration; n = 12–15) datasets to prioritize candidates for experimental validation. Among these medications, ibrutinib was consistently linked with the molecular profiles of both neuronal cocaine exposure and mouse cocaine self-administration. We assessed the therapeutic efficacy of ibrutinib using the Drosophila melanogaster model. Ibrutinib reduced cocaine-induced startle response and cocaine-induced seizures (n = 61–142 per group; sex: 51% female), despite increasing cocaine consumption. Our results suggest that ibrutinib could be used for the treatment of cocaine use disorder.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hadas Ahdoot-Levi ◽  
Ofri Croitoru ◽  
Tzofnat Bareli ◽  
Einav Sudai ◽  
Hilla Peér-Nissan ◽  
...  

Cocaine addiction is an acquired behavioral state developed in vulnerable individuals after cocaine exposure. It is characterized by compulsive drug-seeking and high vulnerability to relapse even after prolonged abstinence, associated with decreased neurogenesis in the hippocampus. This addictive state is hypothesized to be a form of “memory disease” in which the drug exploits the physiological neuroplasticity mechanisms that mediate regular learning and memory processes. Therefore, a major focus of the field has been to identify the cocaine-induced neuroadaptations occurring in the usurped brain’s reward circuit. The neurosteroid dehydroepiandrosterone (DHEA) affects brain cell morphology, differentiation, neurotransmission, and memory. It also reduces drug-seeking behavior in an animal model of cocaine self-administration. Here, we examined the long-lasting effects of DHEA treatment on the attenuation of cocaine-seeking behavior. We also examined its short- and long-term influence on hippocampal cells architecture (neurons and astrocytes). Using a behavioral examination, immunohistochemical staining, and diffusion tensor imaging, we found an immediate effect on tissue density and activation of astrocytes, which has a continuous beneficial effect on neurogenesis and tissue organization. This research emphasizes the requites concert between astrocytes and neurons in the rehabilitation from addiction behavior. Thus, DHEA may serve as a treatment that corrects brain damage following exposure to and abstinence from cocaine.


2021 ◽  
Author(s):  
Xiaojie Zhao ◽  
Fan Zhang ◽  
Suresh J Kandel ◽  
Frederic Brau ◽  
Johnny He

HIV infection of the central nervous system causes HIV-associated neurocognitive disease (HAND) in up to 50% HIV-infected individuals. Cocaine use is prevalent in the HIV-infected population and has been shown to facilitate the HAND progression. However, the cellular and molecular mechanism of the cocaine-facilitated HAND progression remains largely unknown. In this study, we took advantage of the doxycycline inducible and brain-specific HIV Tat transgenic mouse model (iTat) of HAND and characterized effects of chronic cocaine exposure and long-term Tat expression on HAND-associated neurology and neuropathology. We found that cocaine exposure worsened the learning and memory of iTat mice, coupled with dendritic spine swelling, increased synaptophysin expression, and diminished microglia and astrocyte activation. We then employed the single-base resolution whole genome bisulfate sequencing and RNA sequencing and identified 14,838 hypermethylated CpG-related differentially methylated regions (DMR) and 15,800 hypomethylated CpG-related DMR that were linked to 52 down- and 127 up-regulated genes by cocaine and Tat. We further uncovered these genes to be mostly enriched at neuronal function- and cell morphology- and synapse formation-related ECM-receptor interaction pathway, and to be linked to behavioral and pathological changes altered by cocaine and Tat. Eight mostly affected genes included four in microglia Ift172, Eif2ak4, Pik3c2a, and Phf8, two in astrocytes Garem1 and Adgrb3, and two in neurons Dcun1d4 and Adgrb3. These findings demonstrated for the first time that cocaine and Tat interactively contributed to HAND neurology and neuropathology through genome-wide changes of DNA methylation and gene expression and suggest that targeting epigenetic changes serves as a potentially new therapeutic strategy to treat cocaine use disorder in people living with HAND.


2021 ◽  
Author(s):  
Robert S Gardner ◽  
Donna L Korol ◽  
Paul E Gold

These experiments examined whether exposure to drugs of abuse altered the balance between hippocampal and striatal memory systems as measured long after drug treatments. Male rats received injections of morphine (5 mg/kg), cocaine (20 mg/kg), or saline for five consecutive days. One month later, rats were then trained to find food on a hippocampus-sensitive place task or a striatum-sensitive response task. Relative to saline controls, morphine-treated rats exhibited impaired place learning but enhanced response learning; prior cocaine exposure did not significantly alter learning on either task. Another set of rats was trained on a dual-solution T-maze that can be solved with either place or response strategies. While a majority (67%) of control rats used place solutions in this task, morphine treatment one month prior resulted in a shift to response solutions exclusively (100%). Prior cocaine treatment did not significantly alter strategy selection. Molecular markers related to learning and drug abuse were measured in the hippocampus and striatum one month after drug exposure in behaviorally untested rats. Protein levels of glial-fibrillary acidic protein (GFAP), an intermediate filament specific to astrocytes, increased significantly in the hippocampus after morphine, but not after cocaine exposure. Exposure to morphine or cocaine did not significantly change levels of brain-derived neurotrophic factor (BDNF) or a downstream target of BDNF signaling, glycogen synthase kinase 3β (GSK3β), in the hippocampus or striatum. Thus, exposure to morphine results in a long-lasting shift from hippocampal toward striatal dominance during learning. The effects of prior morphine injections on GFAP suggest that long-lasting alterations in hippocampal astrocytes may be associated with these behavioral strategy shifts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan L. Gomez ◽  
Jordi Bonaventura ◽  
Jacqueline Keighron ◽  
Kelsey M. Wright ◽  
Dondre L. Marable ◽  
...  

AbstractCocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine’s pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.


2021 ◽  
Author(s):  
Guilian Tian ◽  
May Hui ◽  
Desiree Macchia ◽  
Pieter Derdeyn ◽  
Alexandra Rogers ◽  
...  

While midbrain dopamine (DA) neuronal circuits are central to motivated behaviors, much remains unknown about our knowledge of how these circuits are modified over time by experience to facilitate selective aspects of experience-dependent plasticity. Most studies of the DA system in drug addiction focus on the role of the mesolimbic DA pathway from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) in facilitating drug-associated reward. In contrast, less is known about how midbrain DA cells and associated circuits contribute to negative affective states including anxiety that emerge during protracted withdrawal from drug administration. Here, we demonstrate the selective role of a midbrain DA projection to the amygdala (VTADA-Amygdala) for anxiety that develops during protracted withdrawal from cocaine administration but does not participate in cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach revealed a persistent elevation in spontaneous and task-related activity of GABAergic cells from the bed nucleus of the stria terminals (BNST) and downstream VTADA-Amygdala cells that could be detected even after a single cocaine exposure. Activity in BNSTGABA cells was related to cocaine-induced anxiety but not reward or sensitization, and silencing the projection from these cells to the midbrain was sufficient to prevent the development of anxiety during protracted withdrawal following cocaine administration. We observed that VTADA-Amygdala cells, but not other midbrain DA cells, were strongly activated after a challenge exposure to cocaine, and found that activity in these cells was necessary for the expression of reinstatement of cocaine place preference. Lastly, the importance of activity in VTADA-Amygdala cells extends beyond cocaine, as these cells mediate the development of anxiety states triggered by morphine and a predator odor. Our results provide an exemplar for how to identify key circuit substrates that contribute to behavioral adaptations and reveal a critical role for BNSTGABA-VTADA-Amygdala pathway in anxiety states induced by drugs of abuse or natural experiences as well as cocaine-primed reinstatement of conditioned place preference.


Sign in / Sign up

Export Citation Format

Share Document