glutamate concentration
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 31)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 9 (5) ◽  
Author(s):  
Blaise M. Costa ◽  
Lina Cortés Kwapisz ◽  
Brittney Mehrkens ◽  
Douglas N. Bledsoe ◽  
Bryanna N. Vacca ◽  
...  

2021 ◽  
Author(s):  
Gengyang Yuan ◽  
Maeva Dhaynaut ◽  
Nicolas J Guehl ◽  
Neelamegam Ramesh ◽  
Sung-Hyun Moon ◽  
...  

Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001).Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001 dose- and delivery-dependently. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beata R. Godlewska ◽  
Amedeo Minichino ◽  
Uzay Emir ◽  
Ilinca Angelescu ◽  
Belinda Lennox ◽  
...  

AbstractAbnormalities in glutamate neurotransmission are linked to psychotic symptoms and cognitive dysfunction in schizophrenia. magnetic resonance spectroscopy (MRS) provides an acceptable means of measuring glutamate in the human brain but findings from patient studies at conventional magnetic field strength show considerable heterogeneity. Ultra-high-field MRS offers greater precision in glutamate measurement, particularly in delineation of glutamate from its precursor and metabolite, glutamine. This study aimed to use high-field (7 T) MRS to measure concentrations of glutamate and glutamine in three brain regions, anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and putamen (PUT), in young men with early psychosis. MRS was performed in 17 male participants with early psychosis and 18 healthy age-matched controls. Neurometabolite levels were calculated with unsuppressed water signal as the reference and corrected for individual grey matter, white matter and cerebrospinal fluid concentration. Cognitive function was measured with the Brief Assessment of Cognition in Schizophrenia (BACS). Compared to controls, patients with early psychosis had lower concentrations of glutamate and glutamine in ACC. No differences were apparent in the DLPFC and PUT. In patients with early psychosis, there was a highly significant correlation between glutamate concentration in ACC and performance on the BACS, though the numbers available for this analysis were small. Our finding of lower glutamate levels in ACC in patients with schizophrenia is consistent with a recent meta-analysis of 7 T studies and suggests that this abnormality is present in both patients with early psychosis and those with longer-established illness. The possible link between ACC glutamate and cognitive performance requires replication in larger studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shunsuke Nakae ◽  
Masanobu Kumon ◽  
Kazuhiro Murayama ◽  
Shigeo Ohba ◽  
Hikaru Sasaki ◽  
...  

AbstractSeizures are common in patients with gliomas; however, the mechanisms of epileptogenesis in gliomas have not been fully understood. This study hypothesized that analyzing quantified metabolites using magnetic resonance spectroscopy (MRS) might provide novel insights to better understand the epileptogenesis in gliomas, and specific metabolites might be indicators of preoperative seizures in gliomas. We retrospectively investigated patient information (gender, age at diagnosis of tumor, their survival time) and tumor information (location, histology, genetic features, and metabolites according to MRS) in patients with gliomas. The data were correlated with the incidence of seizure and analyzed statistically. Of 146 adult supratentorial gliomas, isocitrate dehydrogenase (IDH) mutant tumors significantly indicated higher incidence of preoperative seizures than IDH wild-type gliomas. However, MRS study indicated that glutamate concentration in IDH wild-type gliomas was higher than that in IDH mutant gliomas. Glutamate was not associated with high frequency of preoperative seizures in patients with gliomas. Instead, increased total N-acetyl-l-aspartate (tNAA) was significantly associated with them. Moreover, multivariable analysis indicated that increased level of tNAA was an independent predictor of preoperative seizures. According to MRS analysis, tNAA, rather than glutamate, might be a useful to detect preoperative seizures in patient with supratentorial gliomas.


Sign in / Sign up

Export Citation Format

Share Document