Relationship between orientation selectivity and spatiotemporal receptive field structure of the cat lateral geniculate neurons

2010 ◽  
Vol 68 ◽  
pp. e382
Author(s):  
Naofumi Suematsu ◽  
Tomoyuki Naito ◽  
Hiromichi Sato
1997 ◽  
Vol 78 (2) ◽  
pp. 1045-1061 ◽  
Author(s):  
Daqing Cai ◽  
Gregory C. Deangelis ◽  
Ralph D. Freeman

Cai, Daqing, Gregory C. DeAngelis, and Ralph D. Freeman. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78: 1045–1061, 1997. We have studied the spatiotemporal receptive-field organization of 144 neurons recorded from the dorsal lateral geniculate nucleus (dLGN) of adult cats and kittens at 4 and 8 wk postnatal. Receptive-field profiles were obtained with the use of a reverse correlation technique, in which we compute the cross-correlation between the action potential train of a neuron and a randomized sequence of long bright and dark bar stimuli that are flashed throughout the receptive field. Spatiotemporal receptive-field profiles of LGN neurons generally exhibit a biphasic temporal response, as well as the classical center-surround spatial organization. For nonlagged cells, the first temporal phase of the response dominates, whereas for lagged neurons, the second temporal phase of the response is typically the largest. This temporal phase difference between lagged and nonlagged cells accounts for their divergent behavior in response to flashed stimuli. Most LGN cells exhibit some degree of space-time inseparability, which means that the receptive field cannot simply be viewed as the product of a spatial waveform and a temporal waveform. In these cases, the response of the surround is typically delayed relative to that of the center, and there is some blending of center and surround during the time course of the response. We demonstrate that a simple extension of the traditional difference-of-Gaussians (DOG) model, in which the surround response is delayed relative to that of the center, accounts nicely for these findings. With regard to development, our analysis shows that spatial and temporal aspects of receptive field structure mature with markedly different time courses. After 4 wk postnatal, there is little change in the spatial organization of LGN receptive fields, with the exception of a weak, but significant, trend for the surround to become smaller and stronger with age. In contrast, there are substantial changes in temporal receptive-field structure after 4 wk postnatal. From 4 to 8 wk postnatal, the shape of the temporal response profile changes, becoming more biphasic, but the latency and duration of the response remain unchanged. From 8 wk postnatal to adulthood, the shape of the temporal profile remains approximately constant, but there is a dramatic decline in both the latency and duration of the response. Comparison of our results with recent data from cortical (area 17) simple cells reveals that the temporal development of LGN cells accounts for a substantial portion of the temporal maturation of simple cells.


2005 ◽  
Vol 15 (01n02) ◽  
pp. 55-70 ◽  
Author(s):  
AKHIL R GARG ◽  
KLAUS OBERMAYER ◽  
BASABI BHAUMIK

Recent experimental studies of hetero-synaptic interactions in various systems have shown the role of signaling in the plasticity, challenging the conventional understanding of Hebb's rule. It has also been found that activity plays a major role in plasticity, with neurotrophins acting as molecular signals translating activity into structural changes. Furthermore, role of synaptic efficacy in biasing the outcome of competition has also been revealed recently. Motivated by these experimental findings we present a model for the development of simple cell receptive field structure based on the competitive hetero-synaptic interactions for neurotrophins combined with cooperative hetero-synaptic interactions in the spatial domain. We find that with proper balance in competition and cooperation, the inputs from two populations (ON/OFF) of LGN cells segregate starting from the homogeneous state. We obtain segregated ON and OFF regions in simple cell receptive field. Our modeling study supports the experimental findings, suggesting the role of synaptic efficacy and the role of spatial signaling. We find that using this model we obtain simple cell RF, even for positively correlated activity of ON/OFF cells. We also compare different mechanism of finding the response of cortical cell and study their possible role in the sharpening of orientation selectivity. We find that degree of selectivity improvement in individual cells varies from case to case depending upon the structure of RF field and type of sharpening mechanism.


1998 ◽  
Vol 80 (6) ◽  
pp. 2991-3004 ◽  
Author(s):  
Allen L. Humphrey ◽  
Alan B. Saul

Humphrey, Allen L. and Alan B. Saul. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neurophysiol. 80: 2991–3004, 1998. Direction selectivity in simple cells of cat area 17 is linked to spatiotemporal (S-T) receptive-field structure. S-T inseparable receptive fields display gradients of response timing across the receptive field that confer a preferred direction of motion. Receptive fields that are not direction selective lack gradients; they are S-T separable, displaying uniform timing across the field. Here we further examine this link using a developmental paradigm that disrupts direction selectivity. Cats were reared from birth to 8 mo of age in 8-Hz stroboscopic illumination. Direction selectivity in simple cells was then measured using gratings drifting at different temporal frequencies (0.25–16 Hz). S-T structure was assessed using stationary bars presented at different receptive-field positions, with bar luminance being modulated sinusoidally at different temporal frequencies. For each cell, plots of response phase versus bar position were fit by lines to characterize S-T inseparability at each temporal frequency. Strobe rearing produced a profound loss of direction selectivity at all temporal frequencies; only 10% of cells were selective compared with 80% in normal cats. The few remaining directional cells were selective over a narrower than normal range of temporal frequencies and exhibited weaker than normal direction selectivity. Importantly, the directional loss was accompanied by a virtual elimination of S-T inseparability. Nearly all cells were S-T separable, like nondirectional cells in normal cats. The loss was clearest in layer 4. Normally, inseparability is greatest there, and it correlates well ( r = 0.77) with direction selectivity; strobe rearing reduced inseparability and direction selectivity to very low values. The few remaining directional cells were inseparable. In layer 6 of normal cats, most direction-selective cells are only weakly inseparable, and there is no consistent relationship between the two measures. However, after strobe rearing, even the weak inseparability was eliminated along with direction selectivity. The correlated changes in S-T structure and direction selectivity were confirmed using conventional linear predictions of directional tuning based on responses to counterphasing bars and white noise stimuli. The developmental changes were permanent, being observed up to 12 yr after strobe rearing. The deficits were remarkably specific; strobe rearing did not affect spatial receptive-field structure, orientation selectivity, spatial or temporal frequency tuning, or general responsiveness to visual stimuli. These results provide further support for a critical role of S-T structure in determining direction selectivity in simple cells. Strobe rearing eliminates directional tuning by altering the timing of responses within the receptive field.


2003 ◽  
Vol 553 (2) ◽  
pp. 601-610 ◽  
Author(s):  
Casto Rivadulla ◽  
Luis Martinez ◽  
Kenneth L. Grieve ◽  
Javier Cudeiro

1993 ◽  
Vol 69 (4) ◽  
pp. 1091-1117 ◽  
Author(s):  
G. C. DeAngelis ◽  
I. Ohzawa ◽  
R. D. Freeman

1. Most studies of cortical neurons have focused on the spatial structure of receptive fields. For a more complete functional description of these neurons, it is necessary to consider receptive-field structure in the joint domain of space and time. We have studied the spatiotemporal receptive-field structure of 233 simple cells recorded from the striate cortex of adult cats and kittens at 4 and 8 wk postnatal. The dual goal of this study is to provide a detailed quantitative description of spatiotemporal receptive-field structure and to compare the developmental time courses of spatial and temporal response properties. 2. Spatiotemporal receptive-field profiles have been measured with the use of a reverse correlation method, in which we compute the cross-correlation between a neuron's response and a random sequence of small, briefly presented bright and dark stimuli. The receptive-field profiles of some simple cells are space-time separable, meaning that spatial and temporal response characteristics can be dissociated. Other cells have receptive-field profiles that are space-time inseparable. In these cases, a particular spatial location cannot be designated, unambiguously, as belonging to either an on or off subregion. However, separate on and off subregions may be clearly distinguished in the joint space-time domain. These subregions are generally tilted along an oblique axis. 3. Our observations show that spatial and temporal aspects of receptive-field structure mature with clearly different time courses. By 4 wk postnatal, the spatial symmetry and periodicity of simple-cell receptive fields have reached maturity. The spatial extent (or size) of these receptive fields is adult-like by 8 wk postnatal. In contrast, the response latency and time duration of spatiotemporal receptive fields do not mature until well beyond 8 wk postnatal. 4. By applying Fourier analysis to spatiotemporal receptive-field profiles, we have examined the postnatal development of spatial and temporal selectivity in the frequency domain. By 8 wk postnatal, spatial frequency tuning has clearly reached maturity. On the contrary, temporal frequency selectivity remains markedly immature at 8 wk. We have also examined the joint distribution of optimal spatial and temporal frequencies. From 4 wk postnatal until 8 wk postnatal, the range of optimal spatial frequencies increases substantially, whereas the range of optimal temporal frequencies remains largely unchanged. From 8 wk postnatal until adulthood, there is a large increase in optimal temporal frequencies for cells tuned to low spatial frequencies. For cells tuned to high spatial frequencies, the distribution of optimal temporal frequencies does not change much beyond 8 wk postnatal.(ABSTRACT TRUNCATED AT 400 WORDS)


2016 ◽  
Vol 36 (43) ◽  
pp. 10949-10963 ◽  
Author(s):  
V. Suresh ◽  
U. M. Ciftcio lu ◽  
X. Wang ◽  
B. M. Lala ◽  
K. R. Ding ◽  
...  

2003 ◽  
Vol 89 (2) ◽  
pp. 1003-1015 ◽  
Author(s):  
W. Martin Usrey ◽  
Michael P. Sceniak ◽  
Barbara Chapman

The ferret has become a model animal for studies exploring the development of the visual system. However, little is known about the receptive-field structure and response properties of neurons in the adult visual cortex of the ferret. We performed single-unit recordings from neurons in layer 4 of adult ferret primary visual cortex to determine the receptive-field structure and visual-response properties of individual neurons. In particular, we asked what is the spatiotemporal structure of receptive fields of layer 4 neurons and what is the orientation selectivity of layer 4 neurons? Receptive fields of layer 4 neurons were mapped using a white-noise stimulus; orientation selectivity was determined using drifting, sine-wave gratings. Our results show that most neurons (84%) within layer 4 are simple cells with elongated, spatially segregated,on and off subregions. These neurons are also selective for stimulus orientation; peaks in orientation-tuning curves have, on average, a half-width at half-maximum response of 21.5 ± 1.2° (mean ± SD). The remaining neurons in layer 4 (16%) lack orientation selectivity and have center/surround receptive fields. Although the organization of geniculate inputs to layer 4 differs substantially between ferret and cat, our results demonstrate that, like in the cat, most neurons in ferret layer 4 are orientation-selective simple cells.


Sign in / Sign up

Export Citation Format

Share Document