The phosphodiesterase 10A selective inhibitor, TAK-063, induces c-Fos expression in both direct and indirect pathway medium spiny neurons and sub-regions of the medial prefrontal cortex in rats

2017 ◽  
Vol 125 ◽  
pp. 29-36 ◽  
Author(s):  
Atsushi Nakatani ◽  
Sayuri Nakamura ◽  
Haruhide Kimura
Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3442
Author(s):  
Shannon L. Gourley ◽  
Kolluru D. Srikanth ◽  
Ellen P. Woon ◽  
Hava Gil-Henn

In day-to-day life, we often choose between pursuing familiar behaviors that have been rewarded in the past or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for flexibly arbitrating between old and new behavioral strategies. The way in which DMS neurons host stable connections necessary for sustained flexibility is still being defined. An entry point to addressing this question may be the structural scaffolds on DMS neurons that house synaptic connections. We find that the non-receptor tyrosine kinase Proline-rich tyrosine kinase 2 (Pyk2) stabilizes both dendrites and spines on striatal medium spiny neurons, such that Pyk2 loss causes dendrite arbor and spine loss. Viral-mediated Pyk2 silencing in the DMS obstructs the ability of mice to arbitrate between rewarded and non-rewarded behaviors. Meanwhile, the overexpression of Pyk2 or the closely related focal adhesion kinase (FAK) enhances this ability. Finally, experiments using combinatorial viral vector strategies suggest that flexible, Pyk2-dependent action involves inputs from the medial prefrontal cortex (mPFC), but not the ventrolateral orbitofrontal cortex (OFC). Thus, Pyk2 stabilizes the striatal medium spiny neuron structure, likely providing substrates for inputs, and supports the capacity of mice to arbitrate between novel and familiar behaviors, including via interactions with the medial-prefrontal cortex.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S494
Author(s):  
Jaekyoon Kim ◽  
Christopher Angelakos ◽  
Joseph Linch ◽  
Sarah Ferri ◽  
Ted Abel

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Svetlana A. Ivanova ◽  
Anton J. M. Loonen

A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington’s disease. Huntington’s disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs): postsynaptic density- (PSD-) 95. This leaves more PSD-95 available to stabilize NR2B subunit carrying NMDA receptors in the synaptic membrane. This results in increased excitotoxicity for which particularly striatal medium spiny neurons from the indirect extrapyramidal pathway are sensitive. In Parkinson’s disease the sensitivity for excitotoxicity is related to increased oxidative stress due to genetically determined abnormal metabolism of dopamine or related products. This probably also increases the sensitivity of medium spiny neurons for exogenous levodopa. Particularly the combination of increased oxidative stress due to aberrant dopamine metabolism, increased vulnerability to NMDA induced excitotoxicity, and the particular sensitivity of indirect pathway medium spiny neurons for this excitotoxicity may explain the observed increased prevalence of levodopa-induced dyskinesia.


2017 ◽  
Vol 116 ◽  
pp. 224-232 ◽  
Author(s):  
Craig T. Werner ◽  
Conor H. Murray ◽  
Jeremy M. Reimers ◽  
Niravkumar M. Chauhan ◽  
Kenneth K.Y. Woo ◽  
...  

2002 ◽  
Vol 950 (1-2) ◽  
pp. 165-179 ◽  
Author(s):  
Gaël Hédou ◽  
Ana Lúcia Jongen-Rêlo ◽  
Carol A Murphy ◽  
Christian A Heidbreder ◽  
Joram Feldon

2000 ◽  
Vol 107 (1-2) ◽  
pp. 123-132 ◽  
Author(s):  
Andreas Arvanitogiannis ◽  
Thomas M Tzschentke ◽  
Luigi Riscaldino ◽  
Roy A Wise ◽  
Peter Shizgal

Sign in / Sign up

Export Citation Format

Share Document