viral vector
Recently Published Documents





Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 126
Ana Lilia Peralta-Amaro ◽  
Melina Ivone Tejada-Ruiz ◽  
Karen Lilian Rivera-Alvarado ◽  
Orestes de Jesús Cobos-Quevedo ◽  
Patricia Romero-Hernández ◽  

Kawasaki disease (KD) is a medium-vessel vasculitis that is typically presented during childhood; fewer than 100 cases of KD have been reported worldwide in adult patients who met the criteria according to the American College of Rheumatology. This study presents the case of an 18-year-old patient with no previous history of any disease, who presented atypical KD with liver and kidney dysfunction, with a good response to intravenous immunoglobulin therapy. The symptoms began 22 days after the application of the COVID-19 vaccine (nonreplicating viral vector Vaxzevria), and other conditions were ruled out. The term Adverse Events Following Immunization (AEFI)encompasses all the reactions that follow the application of any vaccine with no necessary causal relationship and can be due to the vaccine product, quality of the vaccine, immunization errors, or anxiety or just happen to be coincident events. These reactions should be reported so that clinicians can identify compatible cases and consider that the presentation of this disease, despite being atypical, can be manifested in adult patients. Likewise, case reports are an important basis for the pharmacovigilance of vaccines.

2022 ◽  
Vol 3 ◽  
Ashley L. Cooney ◽  
Jennifer A. Wambach ◽  
Patrick L. Sinn ◽  
Paul B. McCray

Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial type II cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most commonly presents in the neonatal period with severe RDS and requires lung transplantation for survival. SFTPC mutations act in an autosomal dominant fashion and more commonly presents with chILD or idiopathic pulmonary fibrosis than neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chILD. Gene therapy is a promising option to treat monogenic lung diseases. Successes and challenges in developing gene therapies for genetic disorders of surfactant dysfunction include viral vector design and tropism for target cell types. In this review, we explore adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery vehicles. Both gene addition and gene editing strategies are compared to best design treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes.

BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
P. Kleis ◽  
E. Paschen ◽  
U. Häussler ◽  
Y. A. Bernal Sierra ◽  
C. A. Haas

Abstract Background Optogenetic tools allow precise manipulation of neuronal activity via genetically encoded light-sensitive proteins. Currently available optogenetic inhibitors are not suitable for prolonged use due to short-lasting photocurrents, tissue heating, and unintended changes in ion distributions, which may interfere with normal neuron physiology. To overcome these limitations, a novel potassium channel-based optogenetic silencer, named PACK, was recently developed. The PACK tool has two components: a photoactivated adenylyl cyclase from Beggiatoa (bPAC) and a cAMP-dependent potassium channel, SthK, which carries a large, long-lasting potassium current in mammalian cells. Previously, it has been shown that activating the PACK silencer with short light pulses led to a significant reduction of neuronal firing in various in vitro and acute in vivo settings. Here, we examined the viability of performing long-term studies in vivo by looking at the inhibitory action and side effects of PACK and its components in healthy and epileptic adult male mice. Results We targeted hippocampal cornu ammonis (CA1) pyramidal cells using a viral vector and enabled illumination of these neurons via an implanted optic fiber. Local field potential (LFP) recordings from CA1 of freely moving mice revealed significantly reduced neuronal activity during 50-min intermittent (0.1 Hz) illumination, especially in the gamma frequency range. Adversely, PACK expression in healthy mice induced chronic astrogliosis, dispersion of pyramidal cells, and generalized seizures. These side effects were independent of the light application and were also present in mice expressing bPAC without the potassium channel. Light activation of bPAC alone increased neuronal activity, presumably via enhanced cAMP signaling. Furthermore, we applied bPAC and PACK in the contralateral hippocampus of chronically epileptic mice following a unilateral injection of intrahippocampal kainate. Unexpectedly, the expression of bPAC in the contralateral CA1 area was sufficient to prevent the spread of spontaneous epileptiform activity from the seizure focus to the contralateral hippocampus. Conclusion Our study highlights the PACK tool as a potent optogenetic inhibitor in vivo. However, further refinement of its light-sensitive domain is required to avoid unexpected physiological changes.

2022 ◽  
Vol 23 (2) ◽  
pp. 819
Sherif G. Ahmed ◽  
Casey A. Maguire ◽  
Shiliang Alice Cao ◽  
Gary J. Brenner

Schwannomas are tumors derived from Schwann-lineage cells, cells that protect and support myelinated nerves in the peripheral nervous system. They are typically slow-growing, encapsulated and benign. These tumors develop along peripheral, spinal and cranial nerves causing pain, sensory-motor dysfunction and death. Primary treatment for schwannoma is operative resection which can be associated with significant morbidity. Pharmacotherapy is largely restricted to bevacizumab, which has minimal or no efficacy for many patients and can be associated with treatment-limiting adverse effects. Given the suffering and morbidity associated with schwannoma and the paucity of therapeutic options, there is an urgent need for safe and effective therapies for schwannomas. We previously demonstrated that adeno-associated virus serotype 1 (AAV1) vector mediated delivery of the inflammasome adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) under the control of the P0 promoter, produced a prolonged reduction in tumor volume and tumor-associated pain in human xenograft and mouse syngeneic schwannoma models. Here, we present data essential for the translation of our AAV1-P0-ASC schwannoma gene therapy to clinical trials. We determine the minimum effective dose of AAV1-P0-hASC required to induce an anti-tumor effect in the xenograft human-schwannoma model. We also show that the presence of preexisting AAV1 immunity does not alter the antitumor efficacy of AAV-P0-mASC in a syngeneic mouse schwannoma model. Furthermore, the maximum deliverable intratumoral dose of AAV1-P0-ASC was not associated with neuronal toxicity in immunocompetent mice. Taken together, these safety and efficacy data support the translation of the AAV1-P0-ASC schwannoma gene therapy strategy to clinical trials.

Rubén Pavia-Collado ◽  
Raquel Rodríguez-Aller ◽  
Diana Alarcón-Arís ◽  
Lluís Miquel-Rio ◽  
Esther Ruiz-Bronchal ◽  

The synuclein family consists of α-, β-, and γ-Synuclein (α-Syn, β-Syn, and γ-Syn), expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson’s disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with i) γ-Syn overexpression induced by an adeno-associated viral vector and ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA re-lease/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on SNc/VTA γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261930
Yot Teerawattananon ◽  
Thunyarat Anothaisintawee ◽  
Chatkamol Pheerapanyawaranun ◽  
Siobhan Botwright ◽  
Katika Akksilp ◽  

Real-world effectiveness studies are important for monitoring performance of COVID-19 vaccination programmes and informing COVID-19 prevention and control policies. We aimed to synthesise methodological approaches used in COVID-19 vaccine effectiveness studies, in order to evaluate which approaches are most appropriate to implement in low- and middle-income countries (LMICs). For this rapid systematic review, we searched PubMed and Scopus for articles published from inception to July 7, 2021, without language restrictions. We included any type of peer-reviewed observational study measuring COVID-19 vaccine effectiveness, for any population. We excluded randomised control trials and modelling studies. All data used in the analysis were extracted from included papers. We used a standardised data extraction form, modified from STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). Study quality was assessed using the REal Life EVidence AssessmeNt Tool (RELEVANT) tool. This study is registered with PROSPERO, CRD42021264658. Our search identified 3,327 studies, of which 42 were eligible for analysis. Most studies (97.5%) were conducted in high-income countries and the majority assessed mRNA vaccines (78% mRNA only, 17% mRNA and viral vector, 2.5% viral vector, 2.5% inactivated vaccine). Thirty-five of the studies (83%) used a cohort study design. Across studies, short follow-up time and limited assessment and mitigation of potential confounders, including previous SARS-CoV-2 infection and healthcare seeking behaviour, were major limitations. This review summarises methodological approaches for evaluating real-world effectiveness of COVID-19 vaccines and highlights the lack of such studies in LMICs, as well as the importance of context-specific vaccine effectiveness data. Further research in LMICs will refine guidance for conducting real-world COVID-19 vaccine effectiveness studies in resource-constrained settings.

Encyclopedia ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 96-108
Luigi De Masi ◽  
Maria Antonia Argenio ◽  
Deborah Giordano ◽  
Angelo Facchiano

A new betacoronavirus (CoV-2) is responsible for the pandemic of severe acute respiratory syndrome (SARS) that began in China at the end of 2019, today known as COronaVIrus Disease 2019 (COVID-19). Subsequent studies confirmed the human angiotensin-converting enzyme 2 (hACE2) as the main cell receptor of spike trimeric glycoprotein, located on the viral envelope, mediating the CoV-2 invasion into the host cells through the receptor-binding domain (RBD) of the spike. Computational analysis of the known experimental 3D structures of spike–ACE2 complexes evidenced distinguishing features in the molecular interactions at the RBD-cell receptor binding interface between CoV-2 and previous CoV-1. The spike represents a key target for drug design as well as an optimal antigen for RNA/viral vector vaccines and monoclonal antibodies in order to maximize prevention and therapy of COVID-19.

2022 ◽  
Vol 23 (2) ◽  
pp. 638
Vladimir P. Sotskov ◽  
Nikita A. Pospelov ◽  
Viktor V. Plusnin ◽  
Konstantin V. Anokhin

Hippocampal place cells are a well-known object in neuroscience, but their place field formation in the first moments of navigating in a novel environment remains an ill-defined process. To address these dynamics, we performed in vivo imaging of neuronal activity in the CA1 field of the mouse hippocampus using genetically encoded green calcium indicators, including the novel NCaMP7 and FGCaMP7, designed specifically for in vivo calcium imaging. Mice were injected with a viral vector encoding calcium sensor, head-mounted with an NVista HD miniscope, and allowed to explore a completely novel environment (circular track surrounded by visual cues) without any reinforcement stimuli, in order to avoid potential interference from reward-related behavior. First, we calculated the average time required for each CA1 cell to acquire its place field. We found that 25% of CA1 place fields were formed at the first arrival in the corresponding place, while the average tuning latency for all place fields in a novel environment equaled 247 s. After 24 h, when the environment was familiar to the animals, place fields formed faster, independent of retention of cognitive maps during this session. No cumulation of selectivity score was observed between these two sessions. Using dimensionality reduction, we demonstrated that the population activity of rapidly tuned CA1 place cells allowed the reconstruction of the geometry of the navigated circular maze; the distribution of reconstruction error between the mice was consistent with the distribution of the average place field selectivity score in them. Our data thus show that neuronal activity recorded with genetically encoded calcium sensors revealed fast behavior-dependent plasticity in the mouse hippocampus, resulting in the rapid formation of place fields and population activity that allowed the reconstruction of the geometry of the navigated maze.

2022 ◽  
Rohit Singh ◽  
Upinder Kaur ◽  
Ankur Singh ◽  
Sankha Shubhra Chakrabarti

Abstract COVID-19 vaccines are considered one of the primary strategies for countering the pandemic. While mRNA based and viral vector-based vaccines have been predominantly used, inactivated SARS-CoV-2 vaccines are being manufactured in countries such as China and India. Post approval, rare but serious adverse events such as myocarditis and stroke have been observed with mRNA based and viral vectored COVID-19 vaccines. Inactivated vaccines in general have shown better tolerability in clinical trials. Here we report the first case of new-onset seropositive rheumatoid arthritis (RA) with rheumatoid nodules and refractory reactive eosinophilia within two weeks of receiving an inactivated COVID-19 vaccine (COVAXIN).

Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 86
Sitthichai Kanokudom ◽  
Suvichada Assawakosri ◽  
Nungruthai Suntronwong ◽  
Chompoonut Auphimai ◽  
Pornjarim Nilyanimit ◽  

The coronavirus disease 2019 (COVID-19) pandemic has become a severe healthcare problem worldwide since the first outbreak in late December 2019. Currently, the COVID-19 vaccine has been used in many countries, but it is still unable to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite patients receiving full vaccination doses. Therefore, we aimed to appraise the booster effect of the different platforms of vaccines, including inactivated vaccine (BBIBP), viral vector vaccine (AZD122), and mRNA vaccine (BNT162b2), in healthy adults who received the full dose of inactivated vaccine (CoronaVac). The booster dose was safe with no serious adverse events. Moreover, the immunogenicity indicated that the booster dose with viral vector and mRNA vaccine achieved a significant proportion of Ig anti-receptor binding domain (RBD), IgG anti-RBD, and IgA anti-S1 booster response. In contrast, inactivated vaccine achieved a lower booster response than others. Consequently, the neutralization activity of vaccinated serum had a high inhibition of over 90% against SARS-CoV-2 wild-type and their variants (B.1.1.7–alpha, B.1.351–beta, and B.1.617.2–delta). In addition, IgG anti-nucleocapsid was observed only among the group that received the BBIBP booster. Our study found a significant increase in levels of IFN-ɣ secreting T-cell response after the additional viral vector or mRNA booster vaccination. This study showed that administration with either viral vector (AZD1222) or mRNA (BNT162b2) boosters in individuals with a history of two doses of inactivated vaccine (CoronaVac) obtained great immunogenicity with acceptable adverse events.

Sign in / Sign up

Export Citation Format

Share Document