Gender differences in the neural correlates of response inhibition during a stop signal task

NeuroImage ◽  
2006 ◽  
Vol 32 (4) ◽  
pp. 1918-1929 ◽  
Author(s):  
Chiang-shan Ray Li ◽  
Cong Huang ◽  
R. Todd Constable ◽  
Rajita Sinha
2019 ◽  
Author(s):  
Catherine E. Hegarty ◽  
Mohan W. Gupta ◽  
Eric Miller ◽  
Kevin Terashima ◽  
Sandra Loo ◽  
...  

AbstractInhibitory control deficits represent one of many core cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD). Neuroimaging studies suggest that individuals with ADHD exhibit atypical engagement of neural systems during response inhibition, but the exact nature of this phenotype is obscured by mixed findings. We tested whether drug-free youths with ADHD (n=30, ages 7-14 years, 10 female) exhibited atypical neural correlates of response inhibition, as measured with a stop signal task and fMRI, compared to matched controls. We next investigated medication effects and whether there was a relationship between symptom severity and medication effects on the fMRI-evaluated signal. Finally, we tested for a significant difference between effects of monotherapy and combined pharmacological treatment. Patients showed significantly slower stop signal response time and lower percent inhibition, but no significant differences in the neural correlates of response inhibition relative to controls. However, patients showed significantly elevated signal in frontostriatal regions during responses. Prefrontal signal in patients was positively associated with reaction time variability in patients, and change (medicated – drug free) in the prefrontal signal was significantly associated with symptom scores, such that patients with elevated symptoms had greater BOLD signal reduction following treatment. Medication significantly improved go response time median and variability as well as stop signal reaction time, but there were no significant effects of medication or treatment type on BOLD signal. These findings challenge the notion of frontostriatal hypoactivation during response inhibition as a biomarker for ADHD and suggest that symptom severity may be associated with response to medication.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ozlem Korucuoglu ◽  
Michael P. Harms ◽  
Serguei V. Astafiev ◽  
Semyon Golosheykin ◽  
James T. Kennedy ◽  
...  

Response inhibition (RI) and error monitoring (EM) are important processes of adaptive goal-directed behavior, and neural correlates of these processes are being increasingly used as transdiagnostic biomarkers of risk for a range of neuropsychiatric disorders. Potential utility of these purported biomarkers relies on the assumption that individual differences in brain activation are reproducible over time; however, available data on test-retest reliability (TRR) of task-fMRI are very mixed. This study examined TRR of RI and EM-related activations using a stop signal task in young adults (n = 56, including 27 pairs of monozygotic (MZ) twins) in order to identify brain regions with high TRR and familial influences (as indicated by MZ twin correlations) and to examine factors potentially affecting reliability. We identified brain regions with good TRR of activations related to RI (inferior/middle frontal, superior parietal, and precentral gyri) and EM (insula, medial superior frontal and dorsolateral prefrontal cortex). No subcortical regions showed significant TRR. Regions with higher group-level activation showed higher TRR; increasing task duration improved TRR; within-session reliability was weakly related to the long-term TRR; motion negatively affected TRR, but this effect was abolished after the application of ICA-FIX, a data-driven noise removal method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Paci ◽  
Giulio Di Cosmo ◽  
Mauro Gianni Perrucci ◽  
Francesca Ferri ◽  
Marcello Costantini

AbstractInhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP’s duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Charlotte L. Rae ◽  
Vanessa E. Botan ◽  
Cassandra D. Gould van Praag ◽  
Aleksandra M. Herman ◽  
Jasmina A. K. Nyyssönen ◽  
...  

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S63-S63
Author(s):  
Ya Wang ◽  
Lu-xia Jia ◽  
Xiao-jing Qin ◽  
Jun-yan Ye ◽  
Raymond Chan

Abstract Background Schizotypy, a subclinical group at risk for schizophrenia, have been found to show impairments in response inhibition. Recent studies differentiated proactive inhibition (a preparatory process before the stimuli appears) and reactive inhibition (the inhibition of a pre-potent or already initiated response). However, it remains unclear whether both proactive and reactive inhibition are impaired in schizotypy and what are the neural mechanisms. The present event-related potential study used an adapted stop-signal task to examine the two inhibition processes and the underlying neural mechanisms in schizotypy compared to healthy controls (HC). Methods A total of 21 individuals with schizotypy and 25 matched HC participated in this study. To explore different degrees of proactive inhibition, we set three conditions: a “certain” go condition which no stop signal occurred, a “17% no go” condition in which stop signal would appear in 17% of trials, and a “33% no go” condition in which stop signal would appear in 33% of trials. All participants completed all the conditions, and EEG was recorded when participants completed the task. Results Behavioral results showed that in both schizotypy and HC, the reaction times (RT) of go trials were significantly prolonged as the no go percentage increased, and HC showed significantly longer go RT compared with schizotypy in both “17% no go” and “33% no go” conditions, suggesting greater proactive inhibition in HC. Stop signal reaction times (SSRTs) in “33% no go” condition was shorter than “17% no go” condition in both groups. Schizotypy showed significantly longer SSRTs in both “17% no go” and “33% no go” conditions than HC, indicating schizotypy relied more on reactive inhibition. ERP results showed that schizotypy showed larger overall N1 for go trials than HC irrespective of condition, which may indicate a compensation process in schizotypy. Schizotypy showed smaller N2 on both successful and unsuccessful stop trials in “17% no go” conditions than HC, while no group difference was found in “33% no go” conditions for stop trials, which may indicate impaired error processing. Discussion These results suggested that schizotypy tended to be impaired in both proactive control and reactive control processes.


2020 ◽  
Vol 57 (10) ◽  
Author(s):  
P. Skippen ◽  
W. R. Fulham ◽  
P. T. Michie ◽  
D. Matzke ◽  
A. Heathcote ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document