Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI

NeuroImage ◽  
2011 ◽  
Vol 58 (2) ◽  
pp. 647-655 ◽  
Author(s):  
R.M. Krebs ◽  
D. Heipertz ◽  
H. Schuetze ◽  
E. Duzel
Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1910-1918 ◽  
Author(s):  
Stefania Ferraro ◽  
Anna Nigri ◽  
Maria Grazia Bruzzone ◽  
Luca Brivio ◽  
Alberto Proietti Cecchini ◽  
...  

Objective We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. Methods Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. Results Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. Conclusions The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.


2018 ◽  
Vol 80 (1) ◽  
pp. 219-241 ◽  
Author(s):  
Stephanie C. Gantz ◽  
Christopher P. Ford ◽  
Hitoshi Morikawa ◽  
John T. Williams

1997 ◽  
Vol 273 (6) ◽  
pp. H2549-H2557 ◽  
Author(s):  
Gilbert J. Kirouac ◽  
John Ciriello

Experiments were done in α-chloralose-anesthetized, paralyzed, and artificially ventilated rats to investigate the effect ofl-glutamate (Glu) stimulation of the substantia nigra (SN) and ventral tegmental area (VTA) on arterial pressure (AP) and heart rate (HR). Glu stimulation of the SN pars compacta (SNC) elicited decreases in both mean AP (MAP; −18.9 ± 1.3 mmHg; n = 52) and HR (−26.1 ± 1.6 beats/min; n = 46) at 81% of the sites stimulated. On the other hand, stimulation of the SN pars lateralis or pars reticulata did not elicit cardiovascular responses. Stimulation of the adjacent VTA region elicited similar decreases in MAP (−18.0 ± 2.6 mmHg; n = 20) and HR (−25.4 ± 3.8 beats/min; n = 17) at ∼74% of the sites stimulated. Intravenous administration of the dopamine D2-receptor antagonist raclopride significantly attenuated both the MAP (70%) and the HR (54%) responses elicited by stimulation of the transitional region where the SNC merges with the lateral VTA (SNC-VTA region). Intravenous administration of the muscarinic receptor blocker atropine methyl bromide had no effect on the magnitude of the MAP and HR responses to stimulation of the SNC-VTA region, whereas administration of the nicotinic receptor blocker hexamethonium bromide significantly attenuated both the depressor and the bradycardic responses. These data suggest that dopaminergic neurons in the SNC-VTA region activate a central pathway that exerts cardiovascular depressor effects that are mediated by the inhibition of sympathetic vasoconstrictor fibers to the vasculature and cardioacceleratory fibers to the heart.


Sign in / Sign up

Export Citation Format

Share Document