scholarly journals Visual Cortex Modulates the Magnitude but Not the Selectivity of Looming-Evoked Responses in the Superior Colliculus of Awake Mice

Neuron ◽  
2014 ◽  
Vol 84 (1) ◽  
pp. 202-213 ◽  
Author(s):  
Xinyu Zhao ◽  
Mingna Liu ◽  
Jianhua Cang
Author(s):  
Stéphane Molotchnikoff ◽  
Michel Dubuc

SummaryThe responsiveness of the visual cortex (VC) and superior colliculus (SC) was simultaneously compared following conditioning “ON” or “OFF” stimulation, in the rabbit.Average evoked responses were recorded simultaneously from the visual cortex and superior colliculus. “ON” or “OFF” steps constituted the conditioning stimuli whereas the test stimulus consisted of optic nerve stimulation. All evoked responses exhibited a reversal of their polarity when the electrode was moved in the dorsoventral direction (Negative-Positive in the SC, Positive-Negative in the VC). This assured the somato-dentritic origin of the potentials. The results showed that responsiveness in both structures was significantly higher following an “OFF” stimulus than after an “ON” step. Collicular responsiveness was higher than in the VC when the same conditioning stimulus was applied. The spatial distribution of the source of “OFF” responses was circumscribed to the ventral part of the superficial layer of the superior colliculus. These results suggest specific properties associated with the brightening and dimming systems.


1999 ◽  
Vol 16 (3) ◽  
pp. 541-555 ◽  
Author(s):  
YI ZHANG ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Single-unit recording and micropressure ejection techniques were used to test the effects of norepinephrine (NE) on the responses of neurons in the superficial layers (the stratum griseum superficiale and stratum opticum) of the hamster's superior colliculus (SC). Application of NE suppressed visually evoked responses by ≥30% in 75% of 40 neurons tested and produced ≥30% augmentation of responses in only 5%. The decrement in response strength was mimicked by application of the α2 adrenoceptor agonist, p-aminoclonidine, the nonspecific β agonist, isoproterenol, and the β1 agonist, dobutamine. These agents had similar effects on responses evoked by electrical stimulation of the optic chiasm and visual cortex. The α1 agonist, methoxamine, augmented the light-evoked responses of 53% of 49 SC cells by ≥30%, but had little effect on responses evoked by electrical stimulation of optic chiasm or visual cortex. The effects of adrenergic agonists upon the glutamate-evoked responses of SC cells that were synaptically “isolated” by concurrent application of Mg2+ were similar to those obtained during visual stimulation. Analysis of effects of NE on visually evoked and background activity indicated that application of this amine did not significantly enhance signal-to-noise ratios for most superficial layer SC neurons, and signal-to-noise ratios were in some cases reduced. These results indicate that NE acts primarily through α2 and β1 receptors to suppress the visual responses of SC neurons. Activation of either of these receptors reduces the responses of SC neurons to either of their two major visual inputs as well as to direct stimulation by glutamate, and it would thus appear that these effects are primarily postsynaptic.


2018 ◽  
Vol 120 (6) ◽  
pp. 3063-3076 ◽  
Author(s):  
Camilo Ferrer ◽  
Helen Hsieh ◽  
Lonnie P. Wollmuth

Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15–20, P15–P20), during (P25–P40), and after (P50–P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.


1997 ◽  
Vol 14 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Chang-Jin Jeon ◽  
Michael K. Hartman ◽  
R. Ranney Mize

AbstractBiochemical studies provide evidence that the pathway from visual cortex to the superior colliculus (SC) utilizes glutamate as a neurotransmitter. In the present study, we have used immunocytochemistry, visual cortex lesions, and retrograde tracing to show directly by anatomical methods that glutamate or a closely related analog is contained in corticocollicular neurons and terminals. A monoclonal antibody directed against gamma-L-glutamyl-L-glutamate (gamma glu glu) was used to localize glutamate-like immunoreactivity in both the superior colliculus (SC) and visual cortex (VC). Unilateral lesions of areas 17–18 were made in four cats to determine if gamma glu glu labeling was reduced in SC by this lesion. WGA-HRP was injected into the SC of 10 additional cats in order to determine if corticocollicular neurons were also labeled by the gamma glu glu antibody. A distinctive dense band of gamma glu glu immunoreactivity was found within the deep superficial gray and upper optic layers of SC where many corticotectal axons are known to terminate. Both fibers and cells were labeled within the band. Immunoreactivity was also found in cells and fibers throughout the deep layers of SC. Measures of total immunoreactivity (i.e. optical density) in the dense band were made in sections from the SC both ipsilateral to and contralateral to the lesions of areas 17–18. A consistent reduction in optical density was found in both the neuropil and in cells within the dense band of the SC ipsilateral to the lesion. A large percentage of all corticocollicular neurons that were retrogradely labeled by WGA-HRP also contained gamma glu glu. These results provide further evidence that the corticocollicular pathway in mammals is glutamatergic. The results also suggest that visual cortex ablation alters synthesis or storage of glutamate within postsynaptic SC neurons, presumably as a result of partial deafferentation.


1976 ◽  
Vol 32 (1) ◽  
pp. 72-74 ◽  
Author(s):  
S. Molotchnikoff ◽  
M. Dubuc ◽  
J. R. Brunette

1981 ◽  
Vol 51 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Bruce E Hetzler ◽  
Robert L Heilbronner ◽  
Judith Griffin ◽  
Gregory Griffin

Sign in / Sign up

Export Citation Format

Share Document