scholarly journals DeCoN: Genome-wide Analysis of In Vivo Transcriptional Dynamics during Pyramidal Neuron Fate Selection in Neocortex

Neuron ◽  
2016 ◽  
Vol 89 (1) ◽  
pp. 235
Author(s):  
Bradley J. Molyneaux ◽  
Loyal A. Goff ◽  
Andrea C. Brettler ◽  
Hsu-Hsin Chen ◽  
Juliana R. Brown ◽  
...  
Neuron ◽  
2015 ◽  
Vol 85 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Bradley J. Molyneaux ◽  
Loyal A. Goff ◽  
Andrea C. Brettler ◽  
Hsu-Hsin Chen ◽  
Juliana R. Brown ◽  
...  

2020 ◽  
Author(s):  
Sruti DebRoy ◽  
Victor Aliaga‐Tobar ◽  
Gabriel Galvez ◽  
Srishtee Arora ◽  
Xiaowen Liang ◽  
...  

2013 ◽  
Vol 42 (5) ◽  
pp. 2893-2905 ◽  
Author(s):  
Chunjing Bian ◽  
Xiaochun Yu

Abstract Ten-eleven translocation (TET) family enzymes convert 5-methylcytosine to 5-hydroxylmethylcytosine. However, the molecular mechanism that regulates this biological process is not clear. Here, we show the evidence that PGC7 (also known as Dppa3 or Stella) interacts with TET2 and TET3 both in vitro and in vivo to suppress the enzymatic activity of TET2 and TET3. Moreover, lacking PGC7 induces the loss of DNA methylation at imprinting loci. Genome-wide analysis of PGC7 reveals a consensus DNA motif that is recognized by PGC7. The CpG islands surrounding the PGC7-binding motifs are hypermethylated. Taken together, our study demonstrates a molecular mechanism by which PGC7 protects DNA methylation from TET family enzyme-dependent oxidation.


2010 ◽  
Vol 189 (6) ◽  
pp. 967-980 ◽  
Author(s):  
Junjie Lu ◽  
Feng Li ◽  
Christopher S. Murphy ◽  
Michael W. Davidson ◽  
David M. Gilbert

DNA replication in all eukaryotes follows a defined replication timing program, the molecular mechanism of which remains elusive. Using a Xenopus laevis egg extract replication system, we previously demonstrated that replication timing is established during early G1 phase of the cell cycle (timing decision point [TDP]), which is coincident with the repositioning and anchorage of chromatin in the newly formed nucleus. In this study, we use this same system to show that G2 phase chromatin lacks determinants of replication timing but maintains the overall spatial organization of chromatin domains, and we confirm this finding by genome-wide analysis of rereplication in vivo. In contrast, chromatin from quiescent cells retains replication timing but exhibits disrupted spatial organization. These data support a model in which events at the TDP, facilitated by chromatin spatial organization, establish determinants of replication timing that persist independent of spatial organization until the process of chromatin replication during S phase erases those determinants.


2017 ◽  
Author(s):  
Joo-Young Kang ◽  
Ji-Young Kim ◽  
Kee-Beom Kim ◽  
Jin Woo Park ◽  
Hana Cho ◽  
...  

AbstractThe methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominant in actively transcribed regions of the genome. However, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B (also known as FBXL10), a member of the Jumonji C family of proteins and known for its histone H3K36 demethylase activity, is a di- and tri-methyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, indicating that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase SIRT1 from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. HODGKINSON ◽  
K. CWIKLINSKI ◽  
N. J. BEESLEY ◽  
S. PATERSON ◽  
D. J. L. WILLIAMS

SUMMARYDespite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.


Sign in / Sign up

Export Citation Format

Share Document