dna motif
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 43)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ming Zhou ◽  
Ceyda Coruh ◽  
Guanghui Xu ◽  
Laura M. Martins ◽  
Clara Bourbousse ◽  
...  

AbstractDNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Benjamin H. Krinsky ◽  
Robert K. Arthur ◽  
Shengqian Xia ◽  
Dylan Sosa ◽  
Deanna Arsala ◽  
...  

Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4–NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.


2021 ◽  
Author(s):  
Virendra K Chaudhri ◽  
Harinder Singh

Mammalian transcriptional regulatory sequences are comprised of complex combinations of simple transcription factor (TF) motifs. Stereospecific juxta-positioning of simple TF motifs generates composite elements (CEs), that increase combinatorial and regulatory specificity of TF-DNA interactions. Although a small number of CEs and their cooperative or anti-cooperative modes of TF binding have been thoroughly characterized, a systematic analysis of CE diversity, prevalence and properties in cis-regulomes has not been undertaken. We developed a computational pipeline termed CEseek to discover >20,000 CEs in open chromatin regions of diverse immune cells and validated many using CAP-SELEX, ChIP-Seq and STARR-seq datasets. Strikingly, the CEs manifested a bimodal distribution of configurations, termed digital and fuzzy, based on their stringent or relaxed stereospecific constraints, respectively. Digital CEs mediate cooperative as well as anti-cooperative binding of structurally diverse TFs that likely reflect AND/OR genomic logic gates. In contrast, fuzzy CEs encompass a less diverse set of TF motif pairs that are selectively enriched in p300 associated, multi-genic enhancers. The annotated CEs greatly expand the regulatory DNA motif lexicon and the universe of TF-TF interactions that underlie combinatorial logic of gene regulation.


2021 ◽  
Author(s):  
Manuel E Cantu Gutierrez ◽  
Matthew C Hill ◽  
Gabrielle Largoza ◽  
James F Martin ◽  
Joshua Wythe

Significant phenotypic differences exist between the vascular endothelium of different organs, including cell-cell junctions, paracellular fluid transport, shape, and mural cell coverage. These organ-specific morphological features ultimately manifest as different functional capacities, as demonstrated by the dramatic differences in capillary permeability between the leaky vessels of the liver compared to the almost impermeable vasculature found in the brain. While these morphological and functional differences have been long appreciated, the molecular basis of endothelial organ specialization remains unclear. To determine the epigenetic and transcriptional mechanisms driving this functional heterogeneity, we profiled accessible chromatin, as well as gene expression, in six different organs, across three distinct time points, during murine development and in adulthood. After identifying both common, and organ-specific DNA motif usage and transcriptional signatures, we then focused our studies on the endothelium of the central nervous system. Using single cell RNA-seq, we identified key gene regulatory networks governing brain blood vessel maturation, including TCF/LEF and FOX transcription factors. Critically, these unique regulatory regions and gene expression signatures are evolutionarily conserved in humans. Collectively, this work provides a valuable resource for identifying the transcriptional regulators controlling organ-specific endothelial specialization and provides novel insight into the gene regulatory networks governing the maturation and maintenance of the cerebrovasculature.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Houyu Zhang ◽  
Ting Lu ◽  
Shan Liu ◽  
Jianyu Yang ◽  
Guohuan Sun ◽  
...  

Abstract Tn5 transposase, which can efficiently tagment the genome, has been widely adopted as a molecular tool in next-generation sequencing, from short-read sequencing to more complex methods such as assay for transposase-accessible chromatin using sequencing (ATAC-seq). Here, we systematically map Tn5 insertion characteristics across several model organisms, finding critical parameters that affect its insertion. On naked genomic DNA, we found that Tn5 insertion is not uniformly distributed or random. To uncover drivers of these biases, we used a machine learning framework, which revealed that DNA shape cooperatively works with DNA motif to affect Tn5 insertion preference. These intrinsic insertion preferences can be modeled using nucleotide dependence information from DNA sequences, and we developed a computational pipeline to correct for these biases in ATAC-seq data. Using our pipeline, we show that bias correction improves the overall performance of ATAC-seq peak detection, recovering many potential false-negative peaks. Furthermore, we found that these peaks are bound by transcription factors, underscoring the biological relevance of capturing this additional information. These findings highlight the benefits of an improved understanding and precise correction of Tn5 insertion preference.


2021 ◽  
Author(s):  
Arndt F Siekmann ◽  
Roman Tsaryk ◽  
Nora Yucel ◽  
Zoltan Arany ◽  
Olga Bondareva ◽  
...  

Endothelial cells (EC) lining blood vessels are exposed to mechanical forces, such as shear stress exerted by the flowing blood. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation in addition to cell size and shape. Despite a good understanding of the genes and signaling pathways responding to shear stress, our insights into the transcriptional regulation of these responses is much more limited. In particular, we do not know the different sets of regulatory elements (enhancers) that might control increases or decreases in gene expression. Here, we set out to study changes in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 hours of laminar shear stress. Our results show a correlation of gained and lost enhancers with up- and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized shear stress responsive genes in ECs of zebrafish embryos using RNA-Seq. Together, our results reveal the presence of shear stress responsive DNA regulatory elements and lay the groundwork for the future exploration of these elements and the TFs binding to them in controlling EC biology.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haixia Guo ◽  
Na Li ◽  
Yaping Sun ◽  
Cuiling Wu ◽  
Huixia Deng ◽  
...  

PurposeAlthough MYBL2 had been validated to participate in multiple cancers including leukemia, the role of MYBL2 polymorphisms in acute lymphoblastic leukemia (ALL) was still not clear. In this study, we aimed to evaluate the association between MYBL2 single nucleotide polymorphisms (SNPs) and ALL risk in children.MethodsA total of 687 pediatric ALL cases and 971 cancer-free controls from two hospitals in South China were recruited. A case-control study by genotyping three SNPs in the MYBL2 gene (rs285162 C>T, rs285207 A>C, and rs2070235 A>G) was conducted. The associations were assessed by odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup and stratification analyses were conducted to explore the association of rs285207 with ALL risk in terms of age, sex, immunophenotype, risk level, and other clinical characteristics. The false-positive report probability (FPRP) analysis was performed to verify each significant finding. Functional analysis in silico was used to evaluate the probability that rs285207 might influence the regulation of MYBL2.ResultsOur study demonstrated that rs285207 was related to a decreased ALL risk (adjusted OR = 0.78; 95% CI = 0.63-0.97, P = 0.022) in the dominant model. The associations of rs285207 with ALL risk appeared stronger in patients with pre B ALL (adjusted OR=0.56; 95% CI=0.38-0.84, P=0.004), with normal diploid (adjusted OR=0.73; 95% CI=0.57-0.95, P=0.017), with low risk (adjusted OR=0.68; 95% CI=0.49-0.94, P=0.021), with lower WBC (adjusted OR=0.62; 95% CI=0.43-0.87, P=0.007) or lower platelet level (adjusted OR=0.76; 95% CI=0.59-0.96, P=0.023). With FPRP analysis, the significant association between the rs285207 polymorphism and decreased ALL risk was still noteworthy (FPRP=0.128). Functional analysis showed that IKZF1 bound to DNA motif overlapping rs285207 and had a higher preference for the risk allele A. As for rs285162 C>T and rs2070235 A>G, no significant was found between them and ALL risk.ConclusionIn this study, we revealed that rs285207 polymorphism decreased the ALL risk in children, and rs285207 might alter the binding to IKZF1, which indicated that the MYBL2 gene polymorphism might be a potential biomarker of childhood ALL.


2021 ◽  
Vol 49 (17) ◽  
pp. 10150-10165
Author(s):  
Jeong Hwan Hur ◽  
Chan Young Kang ◽  
Sungjin Lee ◽  
Nazia Parveen ◽  
Jihyeon Yu ◽  
...  

Abstract I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure ‘adenine:cytosine-motif (AC-motif)’. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson–Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.


2021 ◽  
Vol 22 (17) ◽  
pp. 9150
Author(s):  
Xabier de Martin ◽  
Reza Sodaei ◽  
Gabriel Santpere

The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Lin Zheng ◽  
Jin Ze Li ◽  
Ying Xu Li ◽  
Jian Bang Gao ◽  
Jiang Xue Dong ◽  
...  

pH-responsive DNA motifs have attracted substantial attention attributed to their high designability and versatility of DNA chemistry. Such DNA motifs typically exploit DNA secondary structures that exhibit pH response properties because of the presence of specific protonation sites. In this review, we briefly summarized second structure-based pH-responsive DNA motifs, including triplex DNA, i-motif, and A+-C mismatch base pair-based DNA devices. Finally, the challenges and prospects of pH-responsive DNA motifs are also discussed.


Sign in / Sign up

Export Citation Format

Share Document