h4k16 acetylation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Ignacio Campillo-Marcos ◽  
Eva Monte-Serrano ◽  
Elena Navarro-Carrasco ◽  
Raúl García-González ◽  
Pedro A. Lazo

BackgroundChromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs).MethodsKMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis.ResultsChaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death.ConclusionKMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.


Author(s):  
Hironori Abe ◽  
Rajyalakshmi Meduri ◽  
Ziwei Li ◽  
Paul R Andreassen ◽  
Satoshi H Namekawa

Abstract While an E3 ubiquitin ligase, RNF8, was initially reported to be required for histone-to-protamine exchange in spermiogenesis, we subsequently demonstrated that RNF8 is not involved in this process. Nevertheless, reflecting a lingering misunderstanding in the field, a growing number of studies have continued to postulate a requirement for RNF8 in the histone-to-protamine exchange. For example, a recent study claimed that a mouse PIWI protein, MIWI, controls RNF8-mediated histone-to-protamine exchange. Here, confirming our earlier conclusions, we show that RNF8 is required neither for the establishment of histone H4K16 acetylation, which is an initial step in histone removal during spermiogenesis, nor for the incorporation of two protamine proteins, PRM1 and PRM2. Thus, whereas RNF8 mediates ubiquitination of H2A on the sex chromosomes in meiosis, during the prior stage of spermatogenesis, our genetic evidence underscores that RNF8 is not involved in histone-to-protamine exchange.


Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. eabc6663
Author(s):  
Marco Igor Valencia-Sánchez ◽  
Pablo De Ioannes ◽  
Miao Wang ◽  
David M. Truong ◽  
Rachel Lee ◽  
...  

Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Susana M. Contreras ◽  
Agustina Ganuza ◽  
María M. Corvi ◽  
Sergio O. Angel

Abstract Objective Resveratrol (RSV) is a multitarget drug that has demonstrated activity against Toxoplasma gondii in macrophage and human foreskin fibroblast (HFF) cell line infection models. However, the mechanism of action of RSV has not yet been determined. Thus, with the aim of identifying a possible mechanism of the anti-T. gondii activity of this compound, we analyzed the effects of RSV on histones H3 and H4 lysine 16 acetylation (H4K16). We also analyzed RSV-induced DNA damage to intracellular tachyzoites by using the DNA damage marker phosphorylated histone H2A.X (γH2AX). Results RSV inhibited intracellular T. gondii tachyzoite growth at concentrations below the toxic threshold for host cells. The IC50 value after 24 h of treatment was 53 μM. RSV induced a reduction in H4K16 acetylation (H4K16ac), a marker associated with transcription, DNA replication and homologous recombination repair. A similar deacetylation effect was observed on histone H3. RSV also increased T. gondii H2A.X phosphorylation at the SQE motif (termed γH2A.X), which is a DNA damage-associated posttranslational modification. Our findings suggest a possible link between RSV and DNA damage or repair processes that is possibly associated with DNA replication stress.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Kerstin B Kaufmann ◽  
Andy G.X. Zeng ◽  
Etienne Coyaud ◽  
Laura Garcia Prat ◽  
Efthymia Papalexi ◽  
...  

The first insight into the complexity of post-transplant in vivo dynamics of hematopoietic stem cells (HSC) in humans was only recently showcased by examining longitudinal clonal contributions in gene therapy patients. Initial blood reconstitution was achieved by short-term (ST-)HSC, but in the longer-term hematopoiesis originated from long-term (LT-)HSC that only became recruited after a latency phase of 1-2 years (Scala et al 2018). Thus, deciphering the mechanisms governing how LT-HSC might resist transplant mediated activation and/or respond to the varying hematopoietic demands that occur during homeostasis would be an important goal for improving HSC cell therapies. We previously linked INKA1(=C3orf54/FAM212A) mediated PAK4 inhibition and reduced H4K16 acetylation (H4K16ac) to quiescence in human leukemia stem cells (Kaufmann, Blood 2019). Here, we interrogate the role of this signaling axis in normal human hematopoiesis. Immunostaining revealed distinct subsets defined by the dichotomy of INKA1 and H4K16ac within cord blood ST- and LT-HSC, mechanistically supported by BioID, chromatin fiber analysis and PLA data showing INKA1 interacting with the H4K16 deacetylase, SIRT1. Among quiescent LT-HSC, we found that the INKA1high fraction (~10 % of LT-HSC) had the lowest CDK6 levels and represented LT-HSC in an alternative state of quiescence. We then used protein interaction (BioID) data to show that a shared interactor of INKA1 and PAK4, CD112 could be used to sort for the subset of CD112low LT-HSC that was in this alternatively quiescent LT-HSC state (H4K16aclow, CDK6low, CellROXlow). Compared to primary cells, culture attenuates the strict dichotomy of INKA1 and H4K16ac but only in cells in which colocalization of PAK4 with both occurred, suggesting PAK4 interferes with SIRT1-INKA1 interaction thereby permitting H4K16 acetylation. In vitro time course analysis showed that H4K16ac and PAK4 levels preceded the upregulation of the G0-exit marker CDK6 implicating a role in cell cycle priming. Pseudo-time scRNAseq analysis for INKA1high versus PAK4high, CDK6high and CD112high expression in mobilized peripheral blood (modeling in vivo HSC activation) showed enrichment of early or late diffusion indicative of quiescent versus primed cell status, respectively. Strikingly, in xenograft assays CD112low LT-HSC exhibited delayed engraftment kinetics with higher secondary repopulation capacity than faster repopulating CD112high LT-HSC reflecting the subset of LT-HSC that resist early activation. Similarly, INKA1-OE or PAK4 knock-down in vivo resulted in an early restraint in engraftment levels (@4 w), whereas 20 w engraftment reached control levels. When measured in secondary transplant assays the HSC frequency was 4 to 8-fold higher in the groups that showed this early restraint. Thus, resisting early activation (latency) preserves the regenerative potential of such HSC. In vivo 5-Fluorouracil treatment at week 4 accelerated latency exit and further increased HSC frequency of INKA1-OE cells while abolishing serial transplantation potential of controls. Hence, the induction of proliferative stress via creating acute hematopoietic demand is able to lift the INKA1-OE imposed restraint resulting in increased hematopoietic output while also promoting HSC self-renewal. Collectively, our data decipher the molecular intricacies underlying HSC heterogeneity and self-renewal regulation and point to latency as an orchestrated physiological response that integrates quiescence control with HSC fate choices to preserve a stem cell reservoir. Disclosures Takayanagi: Kirin Holdings Company, Ltd: Current Employment. Dick:Bristol-Myers Squibb/Celgene: Research Funding.


2020 ◽  
Author(s):  
Susana Marisol Contreras ◽  
Agustina Ganuza ◽  
Maria Martha Corvi ◽  
Sergio Angel

Abstract Objective: Objective: Resveratrol (RSV) is a multi-target drug that has demonstrated activity against Toxoplasma gondii in macrophage and HFF cell line infection models. However, its mechanism of action has not been determined yet. With the aim of determining a possible mechanism of anti-T. gondii action, we analyzed the effect of RSV on histones H3 and H4 lysine 16 acetylation (H4K16). RSV-induced DNA damage of intracellular tachyzoites was assessed as well by using the DNA damage marker phosphorylated histone H2A.X (gH2AX).Results: RSV inhibited intracellular T. gondii tachyzoite growth at concentrations below the toxic effect on host cells. The IC50 value in a 24-hours treatment was 53 mM. RSV induced a reduction in H4K16 acetylation (H4K16ac), a mark associated to transcription, DNA replication and homologous recombination repair. The same deacetylating effect was observed on histone H3. RSV also enhanced the SQE motif phosphorylation on T. gondii H2A.X (termed γH2A.X), a DNA damage associated PTM. Our findings suggest a possible link between RSV and DNA damage or DNA repair process maybe associated to DNA replication stress.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2986 ◽  
Author(s):  
Raúl García-González ◽  
Patricia Morejón-García ◽  
Ignacio Campillo-Marcos ◽  
Marcella Salzano ◽  
Pedro A. Lazo

Dynamic remodeling of chromatin requires acetylation and methylation of histones, frequently affecting the same lysine residue. These alternative epigenetic modifications require the coordination of enzymes, writers and erasers, mediating them such as acetylases and deacetylases. In cells in G0/G1, DNA damage induced by doxorubicin causes an increase in histone H4K16ac, a marker of chromatin relaxation. In this context, we studied the role that VRK1, a chromatin kinase activated by DNA damage, plays in this early step. VRK1 depletion or MG149, a Tip60/KAT5 inhibitor, cause a loss of H4K16ac. DNA damage induces the phosphorylation of Tip60 mediated by VRK1 in the chromatin fraction. VRK1 directly interacts with and phosphorylates Tip60. Furthermore, the phosphorylation of Tip60 induced by doxorubicin is lost by depletion of VRK1 in both ATM +/+ and ATM−/− cells. Kinase-active VRK1, but not kinase-dead VRK1, rescues Tip60 phosphorylation induced by DNA damage independently of ATM. The Tip60 phosphorylation by VRK1 is necessary for the activating acetylation of ATM, and subsequent ATM autophosphorylation, and both are lost by VRK1 depletion. These results support that the VRK1 chromatin kinase is an upstream regulator of the initial acetylation of histones, and an early step in DNA damage responses (DDR).


2020 ◽  
Vol 33 (10) ◽  
pp. 1242-1251
Author(s):  
Guangyuan Wang ◽  
Limin Song ◽  
Tingting Bai ◽  
Wenxing Liang

Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.


2019 ◽  
Author(s):  
Deo Prakash Chaturvedi

AbstractThe hsrω lncRNAs are known to interact with the Iswi chromatin remodeler while Iswi is known to interact with Gcn5, a general histone acetyl transferase, and Mof, a male-specific HAT essential for H4K16 acetylation and consequent hyperactivity of the single X-chromosome in male Drosophila. We show here that hsrω genetically interacts with Gcn5 as well as Mof, but unlike the suppression of phenotypes due to down-regulation or absence of Iswi, those following down-regulation of Gcn5 or Mof are suppressed by over-expression of hsrω. General lethality caused by Act-GAL4 driven global expression of Gcn5-RNAi and the male-specific lethality following Mof-RNAi transgene expression were partially suppressed by over-expression of hsrω, but not by down regulation through hsrω-RNAi. Likewise, eye phenotypes following ey-GAL4 driven down-regulation of Gcn5 or Mof were also partially suppressed by over-expression of hsrω. Act-GAL4 driven global over-expression of hsrω along with Gcn5-RNAi transgene substantially restored levels of Gcn5 RNA as well as protein that were reduced by Gcn5-RNAi. Mof-RNAi transgene expression reduced Megator and Msl-2 levels and their nuclear distribution patterns; over-expression of hsrω along with Mof-RNAi substantially restored Megator levels and its distribution at the nuclear rim and in nucleoplasmic speckles and at the same time restored the male X-chromosome specific localization of Msl-2. Earlier reported antagonistic interactions of Mof with Iswi and interaction of hsrω transcripts with Megator appear to underlie the suppression of Gcn5 and Mof phenotypes by over-expression of the lncRNAs. Present results add the dosage compensation pathway to the list of diverse pathways in which the multiple lncRNAs produced by the hsrω are known to have important roles.


Sign in / Sign up

Export Citation Format

Share Document