The superior colliculus subserves interhemispheric neural summation in both normals and patients with a total section or agenesis of the corpus callosum

2004 ◽  
Vol 42 (12) ◽  
pp. 1608-1618 ◽  
Author(s):  
Silvia Savazzi ◽  
Carlo A. Marzi
1979 ◽  
Vol 42 (1) ◽  
pp. 137-152 ◽  
Author(s):  
A. Antonini ◽  
G. Berlucchi ◽  
C. A. Marzi ◽  
J. M. Sprague

1. Section of the posterior two-thirds of the corpus callosum eliminates almost completely the response of superior colliculus (SC) neurons to stimulation of the contralateral eye in split-chiasm cats. On the contrary, the responsiveness of SC neurons to stimulation of the contralateral eye is not abolished by a transection of the posterior and tectal commissures leaving the corpus callosum intact. The callosal section also reduces the number of SC receptive fields abutting the vertical meridian in the ipsilateral eye of split-chiasm cats. 2. In cats with intact optic pathways, a similar callosal section abolishes the SC representation of the ipsilateral visual field in the ipsilateral eye and also reduces the number of receptive fields adjoining the vertical meridian in the same eye. In the contralateral eye, the SC representation of the ipsilateral visual field is reduced in extension to about one-fifth of that seen in cats with intact commissures. 3. The results suggest that the corpus callosum is the main pathway for cross-midline communication of visual information at not only the cortical, but also the midbrain level. The corpus callosum may subserve this function because it contains uninterrupted crossed corticotectal projections or because it transmits visual information from one hemisphere to contralateral cortical areas projecting ipsilaterally to SC. The latter hypothesis is more likely but, in any case, the findings imply that the lack of interhemispheric transfer of visual learning in cats with a chiasmatic and callosal section may depend on a midline disconnection of both subcortical and cortical visual centers. 4. The corpus callosum is also responsible for the representation of the ipsilateral visual field of the ipsilateral eye in the cat SC. The SC representation of the ipsilateral visual field in the contralateral eye is due, in minimal part, to direct retinotectal connections from temporal retina and, for the largest part, to the corpus callosum. 5. Finally, the corpus callosum contributes to the representation of the contralateral visual field near the vertical meridian of the temporal retina in both split-chiasm and normal cats. This is probably due to the scarcity of direct retinotectal projections from this part of the retina and to their supplementation by corticotectal neurons influenced by the callosal afferents.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


2000 ◽  
Vol 42 (01) ◽  
pp. 8 ◽  
Author(s):  
S Overmeyer ◽  
A Simmons ◽  
J Santosh ◽  
C Andrew ◽  
S C R Williams ◽  
...  

2000 ◽  
Vol 59 (3) ◽  
pp. 150-158 ◽  
Author(s):  
Nadia Ortiz ◽  
Michael Reicherts ◽  
Alan J. Pegna ◽  
Encarni Garran ◽  
Michel Chofflon ◽  
...  

Patients suffering from Multiple Sclerosis (MS) have frequently been found to suffer from damage to callosal fibers. Investigations have shown that this damage is associated with signs of hemisphere disconnections. The aim of our study was to provide evidence for the first signs of interhemispheric dysfunction in a mildly disabled MS population. Therefore, we explored whether the Interhemispheric Transfer (IT) deficit is multi-modal and sought to differentiate two MS evolution forms, on the basis of an interhemispheric disconnection index. Twenty-two patients with relapsing-remitting form of MS (RRMS) and 14 chronic-progressive (CPMS) were compared with matched controls on four tasks: a tachistoscopic verbal and non-verbal decision task, a dichotic listening test, cross tactile finger localization and motor tapping. No overall impairment was seen. The dichotic listening and lexical decision tasks were the most sensitive to MS. In addition, CPMS patients' IT was more impaired and was related to the severity of neurological impairment. The different sizes of the callosal fibers, which determine their vulnerability, may explain the heterogeneity of transfer through the Corpus Callosum. Therefore, evaluation of IT may be of value as an index of evolution in MS.


Sign in / Sign up

Export Citation Format

Share Document