Action verbs and the primary motor cortex: A comparative TMS study of silent reading, frequency judgments, and motor imagery

2008 ◽  
Vol 46 (7) ◽  
pp. 1915-1926 ◽  
Author(s):  
Barbara Tomasino ◽  
Gereon R. Fink ◽  
Roland Sparing ◽  
Manuel Dafotakis ◽  
Peter H. Weiss
NeuroImage ◽  
2019 ◽  
Vol 184 ◽  
pp. 36-44 ◽  
Author(s):  
David M.A. Mehler ◽  
Angharad N. Williams ◽  
Florian Krause ◽  
Michael Lührs ◽  
Richard G. Wise ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Elodie Saruco ◽  
Franck Di Rienzo ◽  
Susana Nunez-Nagy ◽  
Miguel A. Rubio-Gonzalez ◽  
Philip L. Jackson ◽  
...  

2010 ◽  
Vol 32 (9) ◽  
pp. 1471-1482 ◽  
Author(s):  
Barbara Pelgrims ◽  
Nicolas Michaux ◽  
Etienne Olivier ◽  
Michael Andres

2013 ◽  
Vol 110 (5) ◽  
pp. 1158-1166 ◽  
Author(s):  
Mitsuaki Takemi ◽  
Yoshihisa Masakado ◽  
Meigen Liu ◽  
Junichi Ushiba

There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery is believed to represent increased sensorimotor cortex excitability. However, it remains unclear whether the sensorimotor cortex excitability is actually correlated with ERD. Thus we assessed the association of ERD with primary motor cortex (M1) excitability during motor imagery of right wrist movement. M1 excitability was tested by motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) with transcranial magnetic stimulation (TMS). Twenty healthy participants were recruited. The participants performed 7 s of rest followed by 5 s of motor imagery and received online visual feedback of the ERD magnitude of the contralateral hand M1 while performing the motor imagery task. TMS was applied to the right hand M1 when ERD exceeded predetermined thresholds during motor imagery. MEP amplitudes, SICI, and ICF were recorded from the agonist muscle of the imagined hand movement. Results showed that the large ERD during wrist motor imagery was associated with significantly increased MEP amplitudes and reduced SICI but no significant changes in ICF. Thus ERD magnitude during wrist motor imagery represents M1 excitability. This study provides electrophysiological evidence that a motor imagery task involving ERD may induce changes in corticospinal excitability similar to changes accompanying actual movements.


NeuroImage ◽  
1997 ◽  
Vol 6 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Alfons Schnitzler ◽  
Stephan Salenius ◽  
Riitta Salmelin ◽  
Veikko Jousmäki ◽  
Riitta Hari

Neuroreport ◽  
2017 ◽  
Vol 28 (12) ◽  
pp. 731-738 ◽  
Author(s):  
Meena M. Makary ◽  
Seulgi Eun ◽  
Ramy S. Soliman ◽  
Abdalla Z. Mohamed ◽  
Jeungchan Lee ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5588 ◽  
Author(s):  
Hai-Jiang Meng ◽  
Yan-Ling Pi ◽  
Ke Liu ◽  
Na Cao ◽  
Yan-Qiu Wang ◽  
...  

Background Both motor imagery (MI) and motor execution (ME) can facilitate motor cortical excitability. Although cortical excitability is modulated by intracortical inhibitory and excitatory circuits in the human primary motor cortex, it is not clear which intracortical circuits determine the differences in corticospinal excitability between ME and MI. Methods We recruited 10 young healthy subjects aged 18−28 years (mean age: 22.1 ± 3.14 years; five women and five men) for this study. The experiment consisted of two sets of tasks involving grasp actions of the right hand: imagining and executing them. Corticospinal excitability and short-interval intracortical inhibition (SICI) were measured before the interventional protocol using transcranial magnetic stimulation (baseline), as well as at 0, 20, and 40 min (T0, T20, and T40) thereafter. Results Facilitation of corticospinal excitability was significantly greater after ME than after MI in the right abductor pollicis brevis (APB) at T0 and T20 (p < 0.01 for T0, and p < 0.05 for T20), but not in the first dorsal interosseous (FDI) muscle. On the other hand, no significant differences in SICI between ME and MI were found in the APB and FDI muscles. The facilitation of corticospinal excitability at T20 after MI correlated with the Movement Imagery Questionnaire (MIQ) scores for kinesthetic items (Rho = −0.646, p = 0.044) but did not correlate with the MIQ scores for visual items (Rho = −0.265, p = 0.458). Discussion The present results revealed significant differences between ME and MI on intracortical excitatory circuits of the human motor cortex, suggesting that cortical excitability differences between ME and MI may be attributed to the activation differences of the excitatory circuits in the primary motor cortex.


2019 ◽  
Author(s):  
Cécilia Neige ◽  
Dylan Rannaud Monany ◽  
Cathy M. Stinear ◽  
Winston D. Byblow ◽  
Charalambos Papaxanthis ◽  
...  

AbstractMotor imagery (MI) is the mental simulation of an action without any apparent muscular contraction. By means of transcranial magnetic stimulation, few studies revealed a decrease of short-interval intracortical inhibition (SICI) within the primary motor cortex. However, this decrease is ambiguous, as one would expect greater inhibition during MI to prevent overt motor output. The current study investigated the extent of SICI modulation during MI through a methodological and a conceptual reconsideration of i) the importance of parameters to assess SICI (Exp.1) and ii) the inhibitory process within the primary motor cortex as an inherent feature of MI (Exp.2). Participants performed two tasks: 1) rest and 2) imagery of isometric abduction of the right index finger. Using transcranial magnetic stimulation, motor evoked potentials were elicited in the right first dorsal interosseous muscle. An adaptive threshold-hunting paradigm was used, where the stimulus intensity required to maintain a fixed motor evoked potential amplitude was quantified. To test SICI, we conditioned the test stimulus with a conditioning stimulus (CS) of different intensities. Results revealed an Intensity by Task interaction showing that SICI decreased during MI as compared to rest only for the higher CS intensity (Exp.1). At the lowest CS intensities, a Task main effect revealed that SICI increased during MI (Exp.2). SICI modulation during MI depends critically on the CS intensity. By optimising CS intensity, we have shown that SICI circuits may increase during MI, revealing a potential mechanism to prevent the production of a movement while the motor system is activated.HighlightsExcitatory and inhibitory neural processes interact during motor imagery, as the motor regions are activated but no movement is produced.The current study investigated the extent of short interval intracortical inhibition modulation (SICI) during motor imagery.When using optimal settings, SICI increased during motor imagery, likely to prevent the production of an overt movement.


Sign in / Sign up

Export Citation Format

Share Document