event related desynchronization
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 34)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 1 (4) ◽  
pp. 100058
Author(s):  
Mareike Daeglau ◽  
Catharina Zich ◽  
Julius Welzel ◽  
Samira Kristina Saak ◽  
Jannik Florian Scheffels ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Satoko Koganemaru ◽  
Fumiya Mizuno ◽  
Toshimitsu Takahashi ◽  
Yuu Takemura ◽  
Hiroshi Irisawa ◽  
...  

Swallowing in humans involves many cortical areas although it is partly mediated by a series of brainstem reflexes. Cortical motor commands are sent to muscles during swallow. Previous works using magnetoencephalography showed event-related desynchronization (ERD) during swallow and corticomuscular coherence (CMC) during tongue movements in the bilateral sensorimotor and motor-related areas. However, there have been few analogous works that use electroencephalography (EEG). We investigated the ERD and CMC in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow by EEG recordings in 18 healthy human subjects. As a result, we found a significant ERD in the beta frequency band and CMC in the theta, alpha, and beta frequency bands during swallow in those cortical areas. These results suggest that EEG can detect the desynchronized activity and oscillatory interaction between the cortex and pharyngeal muscles in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow in humans.


Author(s):  
Lucía Carolina Carrere ◽  
Melisa Taborda ◽  
Carlos Ballario ◽  
Carolina Tabernig

Abstract Objective. Brain-Computer Interfaces (BCI) with Functional Electrical Stimulation (FES) as a feedback device might promote neuroplasticity and hence improve motor function. Novel findings suggested that neuroplasticity could be possible in people with multiple sclerosis (pwMS). This preliminary study explores the effects of using a BCI-FES in therapeutic intervention, as an emerging methodology for gait rehabilitation in pwMS. Approach: People with relapsing-remitting, primary progressive or secondary progressive MS were evaluated with the inclusion criteria to enroll the 9 participants required by the statistically computed sample size. Each patient trained with a BCI-FES during 24 sessions distributed in 8 weeks. The effects were evaluated on gait speed (Timed 25 Foot Walk), walking ability (12-item Multiple Sclerosis Walking Scale), quality of life measures, the true positive rate as the BCI-FES performance metric and the event-related desynchronization onset latency of the sensorimotor rhythms. Main results: Seven patients completed the therapeutic intervention. A statistically and clinically significant post-treatment improvement was observed in gait speed, as a result of a reduction in the time to walk 25 feet (-1.99 s, p=0.018), and walking ability (-31.25 score points, p=0.028). The true positive rate showed a statistically significant improvement (+15.87 score points, p=0.018). An earlier event-related desynchronization onset latency (-180ms) after treatment was found. Significance: This is the first study that explored gait rehabilitation using BCI-FES in pwMS. The results showed improvement in gait which might have been promoted by changes in functional brain connections involved in sensorimotor rhythm modulation. Although more studies with a larger sample size and control group are required to validate the efficacy of this approach, these results suggest that BCI-FES technology could have a positive effect on MS gait rehabilitation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kosei Nakayashiki ◽  
Hajime Tojiki ◽  
Yoshikatsu Hayashi ◽  
Shiro Yano ◽  
Toshiyuki Kondo

Event-related desynchronization (ERD) is a relative attenuation in the spectral power of an electroencephalogram (EEG) observed over the sensorimotor area during motor execution and motor imagery. It is a well-known EEG feature and is commonly employed in brain-computer interfaces. However, its underlying neural mechanisms are not fully understood, as ERD is a single variable correlated with external events involving numerous pathways, such as motor intention, planning, and execution. In this study, we aimed to identify a dominant factor for inducing ERD. Participants were instructed to grasp their right hand with three different (10, 25, or 40%MVF: maximum voluntary force) levels under two distinct experimental conditions: a closed-loop condition involving real-time visual force feedback (VF) or an open-loop condition in a feedforward (FF) manner. In each condition, participants were instructed to repeat the grasping task a certain number of times with a timeline of Rest (10.0 s), Preparation (1.0 s), and Motor Execution (4.0 s) periods, respectively. EEG signals were recorded simultaneously with the motor task to evaluate the time-course of the event-related spectrum perturbation for each condition and dissect the modulation of EEG power. We performed statistical analysis of mu and beta-ERD under the instructed grasping force levels and the feedback conditions. In the FF condition (i.e., no force feedback), mu and beta-ERD were significantly attenuated in the contralateral motor cortex during the middle of the motor execution period, while ERD in the VF condition was maintained even during keep grasping. Only mu-ERD at the somatosensory cortex tended to be slightly stronger in high load conditions. The results suggest that the extent of ERD reflects neural activity involved in the motor planning process for changing virtual equilibrium point rather than the motor control process for recruiting motor neurons to regulate grasping force.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zu-qiang Xiang ◽  
Yi-lin Huang ◽  
Guang-li Luo ◽  
Hai-lin Ma ◽  
De-long Zhang

The present study aimed to explore the cortical activity underlying mental rotation in high-altitude immigrants via the event-related desynchronization (ERD), the electroencephalogram time–frequency analysis, and source localization based on electroencephalographic data. When compared with the low-altitude individuals, the reaction time of mental rotation tasks was significantly slower in immigrants who had lived in high-altitude areas for 3 years. The time–frequency analysis showed that the alpha ERD and the beta ERD within the time window (400–700 ms) were decreased during the mental rotation tasks in these immigrants. The decreased ERD was observed at the parietal–occipital regions within the alpha band and at the central–parietal regions within the beta band. The decreased ERD might embody the sensorimotor-related cortical activity from hypoxia, which might be involved in cognitive control function in high-altitude immigrants, which provided insights into the neural mechanism of spatial cognition change on aspect of embodied cognition due to high-altitude exposure.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kenneth N. K. Fong ◽  
K. H. Ting ◽  
Jack J. Q. Zhang ◽  
Christina S. F. Yau ◽  
Leonard S. W. Li

Event-related desynchronization (ERD), as a proxy for mirror neuron activity, has been used as a neurophysiological marker for motor execution after mirror visual feedback (MVF). Using EEG, this study investigated ERD upon the immediate effects of single-session MVF in unimanual arm movements compared with the ERD effects occurring without a mirror, in two groups: stroke patients with left hemiplegia and their healthy counterparts. During EEG recordings, each group performed one session of mirror therapy training in three task conditions: with a mirror, with no mirror, and with a covered mirror. An asymmetry index was calculated from the subtraction of the event-related spectrum perturbations between the C3 and C4 electrodes located over the sensorimotor cortices contralateral and ipsilateral to the moved arm. Results of the effect of task versus group in contralateral and ipsilateral motor areas showed that there was a significant effect of task condition at the contralateral motor area in the high beta band (17–35 Hz) at C3. High beta ERD showed that the suppression was greater over the contralateral hemisphere than it was over the ipsilateral hemisphere in both study groups. The magnitude of low beta (12–16 Hz) ERD in patients with stroke was more suppressed in contralesional C3 under the no mirror compared to that of the covered mirror and similarly more suppressed in ipsilesional C4 ERD under the no mirror compared to that of the mirror condition. The correlation analysis revealed that the magnitude of ERSP power correlated significantly with arm severity in the low and high beta bands in patients with stroke, and a higher asymmetry index in the low beta band was associated with higher arm functioning under the no-mirror condition. There was a shift in sensorimotor ERD toward the contralateral hemisphere as induced by MVF accompanying unimanual movement in both stroke patients and healthy controls. The use of ERD in the low beta band as a neurophysiological marker to indicate the relationships between the amount of MVF-induced ERD attenuation and motor severity, and the outcome indicator for improving stroke patients’ neuroplasticity in clinical trials using MVF are warranted to be explored in the future.


2021 ◽  
Author(s):  
Joshua B. Ewen ◽  
Nicolaas A. Puts ◽  
Stewart H. Mostofsky ◽  
Paul S. Horn ◽  
Donald L. Gilbert

ABSTRACTChildren with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several TMS measures have been studied in multiple contexts, we compared ERD and three TMS measures (Resting Motor Threshold [RMT], Short-Interval Cortical Inhibition [SICI] and Task-Related Up-Modulation [TRUM]) within 14 participants with ADHD (ages 8-12y) and 17 control children. The TD group showed a correlation between greater RMT and greater magnitude of alpha (10-13Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: greater TRUM was associated with larger-magnitude ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.


Sign in / Sign up

Export Citation Format

Share Document