scholarly journals Odorant receptor proteins in the mouse main olfactory epithelium and olfactory bulb

Neuroscience ◽  
2017 ◽  
Vol 344 ◽  
pp. 167-177 ◽  
Author(s):  
Victoria F. Low ◽  
Peter Mombaerts
2015 ◽  
Vol 112 (41) ◽  
pp. 12846-12851 ◽  
Author(s):  
Filomene G. Morrison ◽  
Brian G. Dias ◽  
Kerry J. Ressler

Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.


1994 ◽  
Vol 71 (1) ◽  
pp. 150-160 ◽  
Author(s):  
A. Mackay-Sim ◽  
S. Kesteven

1. Regional differences in odorant-induced responsiveness of the rat olfactory epithelium were measured via electrophysiological recordings [negative component of electro-olfactogram (Veog(-)) made from the surface of the olfactory epithelium on the nasal septum]. The nasal septum provided a flat surface from which multiple recordings could be made. 2. Veog(-)s were recorded from a standardized grid of 16 sites. This grid of recording sites extended over most of the surface of the olfactory epithelium on the nasal septum. 3. Twenty-one animals were tested for their responses to seven odorants. The animals were divided into three groups, each of which was tested with two different odorants plus amyl acetate, which provided a comparison between the groups. 4. For each odorant in each animal, topographic maps of relative responsiveness were derived to test whether odorants elicited different patterns of responses in the same individual. Topographic maps of responsiveness were derived also for the animal groups to test for the generality of the form of the maps for different odorants. Response latencies were also measured for each odorant at each recording site. 5. All individuals showed different topographic patterns of responses to the three test odorants. For most odorants, the location of the most responsive site was similar in all animals. In different animals the topographic maps for the same odorant were remarkably similar. Topographic maps for the odorants were all different from one another. 6. These results are consistent with the hypothesis that odorant quality is encoded in the differential spatial distribution of receptor cells whose differences in responsiveness appear to be distributed as a continuum across the epithelium. The results establish for a mammalian species what was previously reported in amphibians. These differences are presumed to be due to differential expression of odorant receptor proteins. 7. The mean response latency was 32 ms. This period was similar for all odorants, all animals, and all recording sites and was independent of Veog(-) amplitude. It is concluded that diffusion through the mucus contributed approximately 6 ms to the latency of onset of the responses to these odorants.


1999 ◽  
Vol 82 (4) ◽  
pp. 1786-1792 ◽  
Author(s):  
Hideki Kashiwadani ◽  
Yasnory F. Sasaki ◽  
Naoshige Uchida ◽  
Kensaku Mori

Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid–responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300–500 μm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In ∼27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.


2020 ◽  
Author(s):  
Arthur D. Zimmerman ◽  
Steven Munger

The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.


2010 ◽  
Vol 31 (6) ◽  
pp. 1108-1116 ◽  
Author(s):  
Burton Slotnick ◽  
Diego Restrepo ◽  
Heather Schellinck ◽  
Georgina Archbold ◽  
Stephen Price ◽  
...  

1995 ◽  
Vol 73 (5) ◽  
pp. 2053-2071 ◽  
Author(s):  
A. R. Cinelli ◽  
K. A. Hamilton ◽  
J. S. Kauer

1. Activity patterns across and within the laminae of the olfactory bulb were analyzed by imaging voltage-sensitive dye responses during odorant stimulation of all or part of the ventral olfactory mucosa. 2. The time course of the signals was generally characterized by a brief, small hyperpolarization, followed by a period of depolarization, and then a longer-lasting hyperpolarization similar to that seen with electric stimulation but with longer durations. 3. The activity was distributed nonhomogeneously across the bulbar laminae in the form of spatially segregated clusters having bandlike appearances. Clusters were observed with three monomolecular odorants, amyl acetate, ethyl-n-butyrate, and limonene, and with the complex odor of meal worms. Although response patterns to different odorants overlapped, they also showed differences in overall distribution. 4. Delivery of high odorant concentrations increased the size of the activated areas and accentuated the degree of response pattern overlap among different odorants. The general properties of the response patterns generated by each odorant were, however, similar at different odorant concentrations and in each of the animals tested. 5. The spatial and temporal distributions of the bulbar responses were somewhat similar regardless of whether the odorants were applied to local epithelial regions via punctate stimulation or to the entire mucosa. Certain regions did, however, have lower thresholds than others for eliciting bulbar activity in response to particular odorants. 6. Odorants applied to regions of the epithelium outside the areas of maximum sensitivity elicited odorant-related activity patterns with depolarizing and hyperpolarizing components similar to those seen with overall stimulation, but only if higher concentrations were used. Activation of distributed odorant sensitivities presumably gave rise to these patterns. 7. These data suggest that subsets of odorant receptor types are found in different areas of the olfactory epithelium, and demonstrate that there is widespread distribution across the epithelium of receptors sensitive to particular odorants. On the basis of the structure of these epithelial fields and the bulb response patterns that they relate to, these findings also provide evidence for complex spatial relationships between the olfactory epithelium and bulb. 8. The findings from this study suggest that representation of odor information in the salamander olfactory bulb does not occur by activation of a few selective bulbar regions, each related to a different odorant species. Instead, large regions of bulbar circuitry are involved in which molecular epitopes may be the unit of representation. Incorporation of new data presented here into a hypothesis of odor coding is discussed.


Sign in / Sign up

Export Citation Format

Share Document