grueneberg ganglion
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Annie Beuve ◽  
Peter Brouckaert ◽  
John C. Burnett, Jr. ◽  
Andreas Friebe ◽  
John Garthwaite ◽  
...  

The mammalian genome encodes seven guanylyl cyclases, GC-A to GC-G, that are homodimeric transmembrane receptors activated by a diverse range of endogenous ligands. These enzymes convert guanosine-5'-triphosphate to the intracellular second messenger cyclic guanosine-3',5'-monophosphate (cyclic GMP). GC-A, GC-B and GC-C are expressed predominantly in the cardiovascular system, skeletal system and intestinal epithelium, respectively. GC-D and GC-G are found in the olfactory neuropepithelium and Grueneberg ganglion of rodents, respectively. GC-E and GC-F are expressed in retinal photoreceptors.


BIOPHYSICS ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 91-97
Author(s):  
E. V. Bigdai ◽  
V. O. Samoilov ◽  
A. A. Sinegubov
Keyword(s):  

2020 ◽  
Author(s):  
Arthur D. Zimmerman ◽  
Steven Munger

The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Julien Brechbühl ◽  
Aurélie de Vallière ◽  
Dean Wood ◽  
Monique Nenniger Tosato ◽  
Marie-Christine Broillet

Abstract The ability to efficiently search for food is fundamental for animal survival. Olfactory messages are used to find food while being aware of the impending risk of predation. How these different olfactory clues are combined to optimize decision-making concerning food selection remains elusive. Here, we find that chemical danger cues drive the food selection in mice via the activation of a specific olfactory subsystem, the Grueneberg ganglion (GG). We show that a functional GG is required to decipher the threatening quality of an unfamiliar food. We also find that the increase in corticosterone, which is GG-dependent, enhances safe food preference acquired during social transmission. Moreover, we demonstrate that memory retrieval for food preference can be extinguished by activation of the GG circuitry. Our findings reveal a key function played by the GG in controlling contextual food responses and illustrate how mammalian organisms integrate environmental chemical stress to optimize decision-making.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Annie Beuve ◽  
Peter Brouckaert ◽  
John C. Burnett, Jr. ◽  
Andreas Friebe ◽  
John Garthwaite ◽  
...  

The mammalian genome encodes seven guanylyl cyclases, GC-A to GC-G, that are homodimeric transmembrane receptors activated by a diverse range of endogenous ligands. These enzymes convert guanosine-5'-triphosphate to the intracellular second messenger cyclic guanosine-3',5'-monophosphate (cyclic GMP). GC-A, GC-B and GC-C are expressed predominantly in the cardiovascular system, skeletal system and intestinal epithelium, respectively. GC-D and GC-G are found in the olfactory neuropepithelium and Grueneberg ganglion of rodents, respectively. GC-E and GC-F are expressed in retinal photoreceptors.


2018 ◽  
Author(s):  
Zhi Huang ◽  
Arthur D. Zimmerman ◽  
Steven D. Munger

ABSTRACTThe main olfactory bulb (MOB) is differentiated into subregions based on their innervation by molecularly distinct chemosensory neurons. For example, olfactory sensory neurons (OSNs) that employ a cGMP-mediated transduction cascade – guanylyl-cyclase D-expressing (GC-D+) OSNs of the main olfactory epithelium (MOE) and chemosensory neurons of the Grueneberg ganglion (GGNs) – project to distinct groups of “necklace” glomeruli encircling the caudal MOB. To better understand the unique functionality and neural circuitry of the necklace glomeruli and their associated sensory neurons, we sought to identify additional molecular markers that would differentiate GC-D+ OSNs and GGNs as well as their target glomeruli. We found in mouse that GC-D+ OSNs, but not other MOE OSNs or GGNs, express the neuropeptide CART (cocaine- and amphetamine-regulated transcript). Both GC-D+ OSNs and GGNs, but not other MOE OSNs, express the Ca2+/calmodulin-dependent phosphodiesterase Pde1a, which is immunolocalized throughout the dendrites, somata and axons of these neurons. Stronger Pde1a immunolabeling in necklace glomeruli innervated by GGNs than in those innervated by GC-D+ OSNs suggests either greater Pde1a expression in individual GGNs than in GC-D+ OSNs or a difference in sensory neuron innervation density between the two types of necklace glomeruli. Together, the unique molecular signatures of GC-D+ OSNs, GGNs and their MOB targets offer important tools for understanding the processing of chemosensory information by olfactory subsystems associated with the necklace glomeruli.


BMC Biology ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Fabian Moine ◽  
Julien Brechbühl ◽  
Monique Nenniger Tosato ◽  
Manon Beaumann ◽  
Marie-Christine Broillet

Neuroscience ◽  
2017 ◽  
Vol 366 ◽  
pp. 149-161 ◽  
Author(s):  
Rosolino Bumbalo ◽  
Marilena Lieber ◽  
Esther Lehmann ◽  
Ines Wolf ◽  
Heinz Breer ◽  
...  
Keyword(s):  

2016 ◽  
pp. 369-390 ◽  
Author(s):  
M. WACKERMANNOVÁ ◽  
L. PINC ◽  
L. JEBAVÝ

Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.


Sign in / Sign up

Export Citation Format

Share Document