water response
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 3)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Yinglong Chen ◽  
Qiang Sun ◽  
Qiang Guo ◽  
Yongjun Gong

Compared with rigid robots, soft robots have better adaptability to the environment because of their pliability. However, due to the lower structural stiffness of the soft manipulator, the posture of the manipulator is usually decided by the weight and the external load under operating conditions. Therefore, it is necessary to conduct dynamics modeling and movement analysis of the soft manipulator. In this paper, a fabric reinforced soft manipulator driven by a water hydraulic system is firstly proposed, and the dynamics of both the soft manipulator and hydraulic system are considered. Specifically, a dynamic model of the soft manipulator is established based on an improved Newton–Euler iterative method, which comprehensively considers the influence of inertial force, elastic force, damping force, as well as combined bending and torsion moments. The dynamics of the water hydraulic system consider the effects of cylinder inertia, friction, and water response. Finally, the accuracy of the proposed dynamic model is verified by comparing the simulation results with the experimental data about the steady and dynamic characteristics of the soft manipulator under various conditions. The results show that the maximum sectional error is about 0.0245 m and that the maximum cumulative error is 0.042 m, which validate the effectiveness of the proposed model.


2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Ana Claudia Pereira Carvalho ◽  
Reinaldo Lorandi ◽  
José Augusto Di Lollo ◽  
Eduardo Goulart Collares ◽  
Luiz Eduardo Moschini

Use of water for several human needs, associated with climate change, indicates the need understand the response of watersheds, in order to provide adequate water resources planning and management. This study was carried out in two pairs of hydrographic watersheds, in the Piracicaba River Basin, southeast of Brazil, analyzing water response, integrating in-situ collected precipitation and flow data, natural environment attributes, and anthropic environmental data. To support the analysis, Surface Runoff Potential Charts (SRPC). The evaluation of the physical characteristics of the sub watersheds (SW(A) and SW(B)) shows that these areas present very low to low potential, indicating greater infiltration capacity. The use and coverage of the soil partially justifies the flow changes in pair 1, since SW(A) has a larger extent of agricultural areas that can use irrigation. SW(B), even with a greater variety of crops, has a smaller cultivated area and tends to demand less water. At pair 2, the low runoff potential is mainly due to the predominance of flat relief in the sub-basins. The soils that compose them present a higher fraction of silt and clay, with thicknesses > 5m in SW(C) and varying from 0.5m, reaching depths above 5m in SW(D), however, the physical properties of these soils do not provide a low flow rate, but associated with the low slope of the land, the geological characteristics and low drainage density are configured in regions where the flow flows more slowly, contributing to the evaporation and infiltration process. The use and coverage of the soil also partially justifies the flow oscillations, due to anthropic activities in SW(C) and SW(D), such as irrigation and spraying of citrus, fertirrigation of sugarcane, irrigation of seedling nurseries, directly interfering with the availability of surface water.


Author(s):  
Jaspreet Kaur

Abstract: The findings of the study showed that at optimum conditions of the operating parameters i.e., current density = 14.17 mA/cm2 , t = 102 min, and pH = 6.25, 63.41% of COD removal, 90.93% of dye removal and 0.0035 kWh/kg of energy consumption, were observed. Kinetic studies showed that EC based treatment of STW followed first order kinetics and the kinetic constants at 30°C for each response parameter i.e., % COD removal and % dye removal were 0.0205 min-1 and 0.0097 min-1 , respectively. Similarly, at 50°C the kinetic constants for % COD removal and % dye removal were 0.037 min-1 and 0.011 min-1 , respectively. Further, it was also observed that the amount of Al in the treated STW, sludge and scum was observed to be 25.16 mg/l, 0.50778g and 0.06006 g, respectively. Keywords: Waste water, Response Surface plots and optimization


2021 ◽  
pp. 131213
Author(s):  
Changtong Zhou ◽  
Yong Qi ◽  
Shufen Zhang ◽  
Wenbin Niu ◽  
Suli Wu ◽  
...  

2021 ◽  
Author(s):  
Simon Hoeg

Abstract. A validation of the recently introduced iterative extension of the standard two-component hydrograph separation method is presented. The data for testing this method are retrieved from a random rainfall generator and a rainfall-runoff model composed of linear reservoirs. The results show that it is possible to reconstruct the simulated event water response of a given random model input by applying the iterative separation model and using a single stable isotope tracer. The benchmark model also covers the partially delayed response of event water so that a situation can be simulated in which pre-event water is rapidly mobilized. It is demonstrated how mathematical constraints, such as an ill-conditioned linear equation system, may influence the separation of the event water response. In addition, it is discussed how the volume weighted separated event water response can serve as an estimator for a time-varying backward travel time distribution.


Author(s):  
Mauro Puime Fernandez ◽  
Rodrigo Cochrane Esteves ◽  
Patricia Bastos Kammradt

ABSTRACT Despite the best efforts of an on-water response to a large oil spill at sea, the likelihood is that at least some of the spilled oil will eventually reach the shoreline. When shoreline impact occurs, or is likely to occur, shoreline assessment is a critical component of the response and provides essential information for setting objectives, priorities, constraints and endpoints for an effective shoreline response.


2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Fatemeh K. Saleh ◽  
Catalin Teodoriu ◽  
Carl Sondergeld

This paper summarizes experimental studies using Nuclear Magnetic Resonance (NMR) to evaluate cement porosity, pore size distribution, and other characteristics such as Calcium Silicate Hydrate (CSH) gel structure and morphology. The first known paper on NMR experiments to investigate cement pastes was published in 1978. Two main NMR parameters, the so-called longitudinal T1 and transverse T2 relaxation times, are commonly measured and analyzed, representing the water response which is trapped in the cement. The hydration process reported in this paper was found to be monitored from as low as 10 min to longer than 365 days. Other studies conducted experiments by using NMR, especially during the 1980s. These studies employed variations in methodologies and frequencies, making data comparison difficult. Additionally, different spectrometers and NMR concepts, as well as operating characteristics, were used. Therefore, it is challenging to reconcile results from previous NMR studies on cement. Other significant hurdles are different cement types, water/cement ratio, and curing conditions. One notable observation is that there has not been any comprehensive laboratory work related to NMR on oilfield cement types, including porosity and hydration. Two recent studies have presented NMR measurements on class G and class H cements.


2021 ◽  
Author(s):  
Cinzia Bottini ◽  
Victor M. Giraldo-Gómez ◽  
Maria Rose Petrizzo ◽  
Elisabetta Erba

<p>The Cretaceous was punctuated by interludes of widespread deposition of organic-rich sediments (black shales) in the oceans and epicontinental seas, named Oceanic Anoxic Events (OAE)s, representing major alterations in the global carbon budget. The early Aptian OAE 1a (ca. 120 Ma) coincided with a global paleoclimatic and paleoenvironmental perturbation which lasted for ca. 1.1 Myrs probably triggered by volcanogenic CO<sub>2 </sub>emissions associated with the emplacement of the Ontong Java Plateau. To date, there is a comprehensive characterization of OAE 1a paleoceanographic conditions and paleoecology of surface-waters while less information is available for bottom-water evolution. In this regard, benthic foraminifera are ideal to characterize deep-water oxygen levels and the organic carbon flux. We present a high-resolution study of benthic foraminiferal assemblages across OAE 1a in the Cismon Core (western Tethys, Lombardy Basin, Northern Italy). Contrarily to many sites, the Cismon Core yields benthic foraminifera also in the Selli Level thus providing information about deep-water conditions during OAE 1a. Our data are indicative of fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor prior to, during and after OAE 1a. The integration of the new benthic foraminiferal data with calcareous nannofossil and planktonic foraminiferal datasets is here used to produce a model of surface- to bottom-water paleowater evolution through the latest Barremian-early late Aptian. In particular, the new data show coeval changes in bottom- and surface-waters conditions prior to and at the onset of OAE 1a. Anoxia was reached during the core of the negative carbon isotope anomaly, under maximum warming and higher surface-water fertility. Conversely, the repopulation of benthic foraminifera postponed the plankton recovery. Benthic foraminifera data at Cismon show, for the first time, evidence of a repopulation event during the OAE 1a suggestive for a slight increase in the supply of oxygen to the seafloor during the Selli Level deposition.</p>


2021 ◽  
Vol 14 (2) ◽  
pp. 821-842
Author(s):  
John F. Burkhart ◽  
Felix N. Matt ◽  
Sigbjørn Helset ◽  
Yisak Sultan Abdella ◽  
Ola Skavhaug ◽  
...  

Abstract. This paper presents Shyft, a novel hydrologic modeling software for streamflow forecasting targeted for use in hydropower production environments and research. The software enables rapid development and implementation in operational settings and the capability to perform distributed hydrologic modeling with multiple model and forcing configurations. Multiple models may be built up through the creation of hydrologic algorithms from a library of well-known routines or through the creation of new routines, each defined for processes such as evapotranspiration, snow accumulation and melt, and soil water response. Key to the design of Shyft is an application programming interface (API) that provides access to all components of the framework (including the individual hydrologic routines) via Python, while maintaining high computational performance as the algorithms are implemented in modern C++. The API allows for rapid exploration of different model configurations and selection of an optimal forecast model. Several different methods may be aggregated and composed, allowing direct intercomparison of models and algorithms. In order to provide enterprise-level software, strong focus is given to computational efficiency, code quality, documentation, and test coverage. Shyft is released open-source under the GNU Lesser General Public License v3.0 and available at https://gitlab.com/shyft-os (last access: 22 November 2020), facilitating effective cooperation between core developers, industry, and research institutions.


2020 ◽  
Vol 12 (50) ◽  
pp. 56413-56423
Author(s):  
Zhenzhi Wang ◽  
Fantao Meng ◽  
Shufen Zhang ◽  
Yao Meng ◽  
Suli Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document