Anisotropic ghost dark energy cosmological model with hybrid expansion law

New Astronomy ◽  
2017 ◽  
Vol 57 ◽  
pp. 70-75 ◽  
Author(s):  
Chandra Rekha Mahanta ◽  
Nitin Sarma
2017 ◽  
Vol 26 (11) ◽  
pp. 1750124 ◽  
Author(s):  
E. Ebrahimi ◽  
H. Golchin ◽  
A. Mehrabi ◽  
S. M. S. Movahed

In this paper, we investigate ghost dark energy model in the presence of nonlinear interaction between dark energy and dark matter. We also extend the analysis to the so-called generalized ghost dark energy (GGDE) which [Formula: see text]. The model contains three free parameters as [Formula: see text] and [Formula: see text] (the coupling coefficient of interactions). We propose three kinds of nonlinear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa from JLA catalog, Hubble parameter, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first nonlinear interaction, the joint analysis indicates that [Formula: see text], [Formula: see text] and [Formula: see text] at 1 optimal variance error. For the second interaction, the best fit values at [Formula: see text] confidence are [Formula: see text], [Formula: see text] and [Formula: see text]. According to combination of all observational data sets considered in this paper, the best fit values for third nonlinearly interacting model are [Formula: see text], [Formula: see text] and [Formula: see text] at [Formula: see text] confidence interval. Finally, we found that the presence of interaction is compatible in mentioned models via current observational datasets.


2009 ◽  
Vol 18 (13) ◽  
pp. 2007-2022 ◽  
Author(s):  
SERGIO DEL CAMPO ◽  
J. R. VILLANUEVA

In this paper we study a quintessence cosmological model in which the dark energy component is considered to be the generalized Chaplygin gas and the curvature of the three-geometry is taken into account. Two parameters characterize this sort of fluid: ν and α. We use different astronomical data for restricting these parameters. It is shown that the constraint ν ≲ α agrees well enough with the astronomical observations.


2016 ◽  
Vol 131 (2) ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
Z. Zarei ◽  
N. Azimi

Author(s):  
Frederick J. Mayer

This brief communication considers and illustrates dark matter and dark energy within the Baryon Phase Transition (BPT) cosmological model as well as some experiments that may confirm (or deny) the validity of the model.


Sign in / Sign up

Export Citation Format

Share Document