Color centers induced in Y3Al5O12 single crystals by swift heavy ions and reactor neutrons

Author(s):  
M. Izerrouken ◽  
A. Meftah ◽  
L. Guerbous ◽  
M. Nekkab
Author(s):  
B. Canut ◽  
S.M.M. Ramos ◽  
R. Brenier ◽  
P. Thevenard ◽  
J.L. Loubet ◽  
...  

2005 ◽  
pp. 207-223
Author(s):  
Koichi Awazu ◽  
Ken-ichi Nomura ◽  
Makoto Fujimaki ◽  
Yoshimichi Ohki

2016 ◽  
Vol 90 ◽  
pp. 18-22 ◽  
Author(s):  
Ruslan Assylbayev ◽  
Abdirash Akilbekov ◽  
Alma Dauletbekova ◽  
Aleksandr Lushchik ◽  
Evgeni Shablonin ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miguel C. Sequeira ◽  
Jean-Gabriel Mattei ◽  
Henrique Vazquez ◽  
Flyura Djurabekova ◽  
Kai Nordlund ◽  
...  

AbstractGaN is the most promising upgrade to the traditional Si-based radiation-hard technologies. However, the underlying mechanisms driving its resistance are unclear, especially for strongly ionising radiation. Here, we use swift heavy ions to show that a strong recrystallisation effect induced by the ions is the key mechanism behind the observed resistance. We use atomistic simulations to examine and predict the damage evolution. These show that the recrystallisation lowers the expected damage levels significantly and has strong implications when studying high fluences for which numerous overlaps occur. Moreover, the simulations reveal structures such as point and extended defects, density gradients and voids with excellent agreement between simulation and experiment. We expect that the developed modelling scheme will contribute to improving the design and test of future radiation-resistant GaN-based devices.


Sign in / Sign up

Export Citation Format

Share Document