Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

Author(s):  
O. Shpotyuk ◽  
A. Ingram ◽  
Ya. Shpotyuk
2010 ◽  
Vol 666 ◽  
pp. 99-102 ◽  
Author(s):  
Maria Fatima Ferreira Marques ◽  
A.M.G. Moreira Da Silva ◽  
P.M. Gordo ◽  
Z. Kajcsos

Positron annihilation lifetime spectroscopy was used to study the free-volume parameters in various pure -, - and -cyclodextrins samples and, in the case of β-cyclodextrin, with inclusion of S-carvone and thymoquinone. The results clearly indicate the presence of long lifetime components related to Ps-formation. The data show that the addition of S-carvone to β-cyclodextrin results in a decrease of o-Ps lifetime that we ascribe to a reduction of free volume holes from 81.8 to 63.7 Å3. The long lifetime component disappears when thymoquinone is added to -cyclodextrin, indicating this substance acts as an o-Ps quencher. For all samples studied, a decrease in the long lifetime component values was observed with increasing source in situ time, a result that might be attributed to the irradiation of the sample by the 22Na positron source.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44282-44290 ◽  
Author(s):  
E. Axpe ◽  
A. B. García-Arribas ◽  
J. I. Mujika ◽  
D. Mérida ◽  
A. Alonso ◽  
...  

We have measured by positron annihilation lifetime spectroscopy (PALS) that ceramide increases the size of the free volume holes in DPPC lipid membranes.


Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 48 ◽  
Author(s):  
Vitaliy Pipich ◽  
Marcel Dickmann ◽  
Henrich Frielinghaus ◽  
Roni Kasher ◽  
Christoph Hugenschmidt ◽  
...  

The morphology of thin film composite (TFC) membranes used in reverse osmosis (RO) and nanofiltration (NF) water treatment was explored with small-angle neutron scattering (SANS) and positron-annihilation lifetime spectroscopy (PALS). The combination of both methods allowed the characterization of the bulk porous structure from a few Å to µm in radius. PALS shows pores of ~4.5 Å average radius in a surface layer of about 4 μm thickness, which become ~40% smaller at the free surface of the membranes. This observation may correlate with the glass state of the involved polymer. Pores of similar size appear in SANS as closely packed pores of ~6 Å radius distributed with an average distance of ~30 Å. The main effort of SANS was the characterization of the morphology of the porous polysulfone support layer as well as the fibers of the nonwoven fabric layer. Contrast variation using the media H2O/D2O and supercritical CO2 and CD4 identified the polymers of the support layers as well as internal heterogeneities.


Sign in / Sign up

Export Citation Format

Share Document