crystalline polymer
Recently Published Documents


TOTAL DOCUMENTS

1944
(FIVE YEARS 149)

H-INDEX

61
(FIVE YEARS 8)

2022 ◽  
pp. 193-198
Author(s):  
Ying Zheng ◽  
Navin Kafle ◽  
Derek Schwarz ◽  
James M. Eagan ◽  
Shigetaka Hayano ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
N. S. Yousef

Polypropylene (PP) is a semi-crystalline polymer that is brittle under severe conditions. To meet industry needs, and to increase the applications of polypropylene, its mechanical properties should be improved. In this research, the mechanical properties of polypropylene, such as tensile strength at break, tensile strength at yield, % elongation, and Young’s modulus, were improved using two types of additives. Additives used were calcium carbonate master batch filler composed of 80% calcium carbonate and 20% polyethylene, and a mixture of linear low-density polyethylene (LLDPE)/low density polyethylene (LDPE). Results showed that both tensile strength at break, and tensile strength at yield, decrease with increasing the amount of both additives. Percentage elongation of PP increased using both additives. The modulus of elasticity of PP increases by increasing the amount of both additives, until a value of 20 wt%. Analysis of variance (ANOVA test) or (F-test) shows significant differences between the effect of different weights of LLDPE/LDPE mixture and calcium carbonate filler on the four mechanical properties of polypropylene studied at a level of 0.05. T-tests are applied to compare between the effect of both calcium carbonate master batch filler and the mixture LLDPE/LDPE on the four mechanical properties of polypropylene studied. T-tests show no significant differences between the effect of both calcium carbonate master batch filler and the mixture LLDPE/LDPE on all mechanical properties of polypropylene studied at a level of 0.05.


2022 ◽  
pp. 141-162
Author(s):  
Alaa A.A. Aljabali ◽  
Kaushik Pal ◽  
Murtaza M. Tambuwala ◽  
Kamal Dua

2022 ◽  
pp. 69-90
Author(s):  
Carolina Müller Cardoso ◽  
Carolina Ferreira de Matos

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4384
Author(s):  
Baku Nagendra ◽  
Emanuele Vignola ◽  
Christophe Daniel ◽  
Paola Rizzo ◽  
Gaetano Guerra

For poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) films exhibiting nanoporous-crystalline (NC) phases, c^ orientation (i.e., crystalline polymer chain axes being preferentially perpendicular to the film plane) is obtained by crystallization of amorphous films, as induced by sorption of suitable low-molecular-mass guest molecules. The occurrence of c^ orientation is relevant for applications of NC PPO films because it markedly increases film transparency as well as guest diffusivity. Surprisingly, we show that the known crystallization procedures lead to c^ oriented thick (50–300 μm) films and to unoriented thin (£20 μm) films. This absence of crystalline phase orientation for thin films is rationalized by fast guest sorption kinetics, which avoid co-crystallization in confined spaces and hence inhibit formation of flat-on lamellae. For thick films exhibiting c^ orientation, sigmoid kinetics of guest sorption and of thickening of PPO films are observed, with inflection points associated with guest-induced film plasticization. Corresponding crystallization kinetics are linear with time and show that co-crystal growth is poorly affected by film plasticization. An additional relevant result of this study is the linear relationship between WAXD crystallinity index and DSC melting enthalpy, which allows evaluation of melting enthalpy of the NC α form of PPO (DHmo = 42 ± 2 J/g).


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3320
Author(s):  
Domenico Sagnelli ◽  
Marcella Calabrese ◽  
Olga Kaczmarczyk ◽  
Massimo Rippa ◽  
Ambra Vestri ◽  
...  

The efficiency of photomobile polymers (PMP) in the conversion of light into mechanical work plays a fundamental role in achieving cutting-edge innovation in the development of novel applications ranging from energy harvesting to sensor approaches. Because of their photochromic properties, azobenzene monomers have been shown to be an efficient material for the preparation of PMPs with appropriate photoresponsivity. Upon integration of the azobenzene molecules as moieties into a polymer, they act as an engine, allowing fast movements of up to 50 Hz. In this work we show a promising approach for integrating ZnO nanoparticles into a liquid crystalline polymer network. The addition of such nanoparticles allows the trapping of incoming light, which acts as diffusive points in the polymer matrix. We characterized the achieved nanocomposite material in terms of thermomechanical and optical properties and finally demonstrated that the doped PMP was better performing that the undoped PMP film.


Sign in / Sign up

Export Citation Format

Share Document