Finite-amplitude long-wave instability of Bingham liquid films

2009 ◽  
Vol 10 (3) ◽  
pp. 1500-1513 ◽  
Author(s):  
Po-Jen Cheng ◽  
Hsin-Yi Lai
1990 ◽  
Vol 217 ◽  
pp. 469-485 ◽  
Author(s):  
Marc K. Smith

A physical mechanism for the long-wave instability of thin liquid films is presented. We show that the many diverse systems that exhibit this instability can be classified into two large groups. Each group is studied using the model of a thin liquid film with a deformable top surface flowing down a rigid inclined plane. In the first group, the top surface has an imposed stress, while in the other, an imposed velocity. The proposed mechanism shows how the details of the energy transfer from the basic state to the disturbance are handled differently in each of these cases, and how a common growth mechanism produces the unstable motion of the disturbance.


2014 ◽  
Vol 752 ◽  
pp. 66-89 ◽  
Author(s):  
Zijing Ding ◽  
Jinlong Xie ◽  
Teck Neng Wong ◽  
Rong Liu

AbstractThe long-wave behaviour of perfectly conducting liquid films flowing down a vertical fibre in a radial electric field was investigated by an asymptotic model. The validity of the asymptotic model was verified by the fully linearized problem, which showed that results were in good agreement in the long-wave region. The linear stability analysis indicated that, when the ratio (the radius of the outer cylindrical electrode over the radius of the liquid film) $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\beta <e$, the electric field enhanced the long-wave instability; when $\beta >e$, the electric field impeded the long-wave instability; when $\beta =e$, the electric field did not affect the long-wave instability. The nonlinear evolution study of the asymptotic model compared well with the linear theory when $\beta <e$. However, when $\beta =e$, the nonlinear evolution study showed that the electric field enhanced the instability which may cause the interface to become singular. When $\beta >e$, the nonlinear evolution studies showed that the influence of the electric field on the nonlinear behaviour of the interface was complex. The electric field either enhanced or impeded the interfacial instability. In addition, an interesting phenomenon was observed by the nonlinear evolution study that the electric field may cause an oscillation in the amplitude of permanent waves when $\beta \ge e$. Further study on steady travelling waves was conducted to reveal the influence of electric field on the wave speed. Results showed that the electric field either increased or decreased the wave speed as well as the wave amplitude and flow rate. In some situations, the wave speed may increase/decrease while its amplitude decreased/increased as the strength of the external electric field increased.


1998 ◽  
Vol 67 (5) ◽  
pp. 1597-1602 ◽  
Author(s):  
Hiroaki Fukuta ◽  
Youichi Murakami

1981 ◽  
Vol 21 (5) ◽  
pp. 602-606 ◽  
Author(s):  
A. A. Borisov ◽  
A. F. Vakhgel't ◽  
V. E. Nakoryakov

2015 ◽  
Vol 780 ◽  
pp. 687-716 ◽  
Author(s):  
Hugo Umberto Quaranta ◽  
Hadrien Bolnot ◽  
Thomas Leweke

We investigate the instability of a single helical vortex filament of small pitch with respect to displacement perturbations whose wavelength is large compared to the vortex core size. We first revisit previous theoretical analyses concerning infinite Rankine vortices, and consider in addition the more realistic case of vortices with Gausssian vorticity distributions and axial core flow. We show that the various instability modes are related to the local pairing of successive helix turns through mutual induction, and that the growth rate curve can be qualitatively and quantitatively predicted from the classical pairing of an array of point vortices. We then present results from an experimental study of a helical vortex filament generated in a water channel by a single-bladed rotor under carefully controlled conditions. Various modes of displacement perturbations could be triggered by suitable modulation of the blade rotation. Dye visualisations and particle image velocimetry allowed a detailed characterisation of the vortex geometry and the determination of the growth rate of the long-wave instability modes, showing good agreement with theoretical predictions for the experimental base flow. The long-term (downstream) development of the pairing instability leads to a grouping and swapping of helix loops. Despite the resulting complicated three-dimensional structure, the vortex filaments surprisingly remain mostly intact in our observation interval. The characteristic distance of evolution of the helical wake behind the rotor decreases with increasing initial amplitude of the perturbations; this can be predicted from the linear stability theory.


Sign in / Sign up

Export Citation Format

Share Document