characteristic distance
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
А.Н. Ищенко ◽  
В.В. Буркин ◽  
А.С. Дьячковский ◽  
А.В. Чупашев ◽  
А.Ю. Саммель ◽  
...  

The analysis of supercavities formed during the high-speed motion in water of two closely spaced supercavitating strikers is performed. By comparing of geometric characteristics of supercavities, the possibility of qualitative assessment of the degree of influence of closely spaced strikers is shown. By the example of two strikers, the characteristic distance between them was determined, at which the minimum mutual influence of the strikers on each other is observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ying Liu ◽  
Xin Guan

The probabilistic hesitant fuzzy set (PHFS) and probabilistic hesitant fuzzy element (PHFE) have drawn the attention of scholars in recent years and have been applied in several disciplines. However, existing PHFE distance measures have several shortcomings. Therefore, in this study, we propose a new PHFE multi-attribute decision-making (MADM) method, based on the comprehensive characteristic distance measure. First, we devise a new PHFE comparison method and then define the comprehensive characteristic distance measure, based on four characteristics. Finally, based on the traditional TODIM method and prospect theory, we propose a new PHFE recognition method. The comprehensive characteristic distance measure avoids the introduction of errors, including an unequal number of elements and order adjustment. Meanwhile, the four characteristics make the measurement results more comprehensive and reasonable, and applicable to a variety of situations while avoiding counterintuitive phenomena. Compared with traditional approaches, the method in this article selects appropriate parameters according to actual situations to obtain more objective conclusions, which results in better flexibility and operability. Besides, the simulation results verify the effectiveness of this recognition method.


2021 ◽  
Vol 39 ◽  
pp. 62-68
Author(s):  
Xiaoping Gong ◽  
Yangjia She ◽  
Tingting Zheng ◽  
Peiran Li ◽  
Jingchang Chen

Author(s):  
Michael Rudolf Koblischka ◽  
Anjela Koblischka-Veneva

As shown previously, a relation between the superconducting transition temperature and some characteristic distance in the crystal lattice holds, which enables the calculation of the superconducting transition temperature, Tc, based only on the knowledge of the electronic configuration and of some details of the crystallographic structure. This relation was found to apply for a large number of superconductors, including the high-temperature superconductors, the iron-based materials, alkali fullerides, metallic alloys, and element superconductors. When applying this scheme called Roeser-Huber formula to Moiré-type superconductivity, i.e., magic-angle twisted bi-layer graphene (tBLG) and bi-layer WSe2, we find that the calculated transition temperatures for tBLG are always higher than the available experimental data, e.g., for the magic angle 1.1∘, we find Tc≈ 4.2–6.7 K. Now, the question arises why the calculation produces larger Tc’s. Two possible scenarios may answer this question: (1) The given problem for experimentalists is the fact that for electric measurements always substrates/caps are required to arrange the electric contacts. When now discussing superconductivity in atomically thin objects, also these layers may play a role forming the Moiré patterns. The consequence of such substrate-induced super-Moiré patterns is that the resulting Moiré pattern always will show a larger cell size, and thus, a lower Tc of the final structure will result. (2) A correction factor to the Roeser-Huber formalism may be required to account for the low charge carrier density of the tBLG. Here, we test both scenarios and find that the introduction of a correction factor η enables a proper calculation of Tc, reproducing the experimental data. We find that η depends exponentially on the value of Tc.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. May ◽  
M. Saccone ◽  
A. van den Berg ◽  
J. Askey ◽  
M. Hunt ◽  
...  

AbstractMagnetic charge propagation in spin-ice materials has yielded a paradigm-shift in science, allowing the symmetry between electricity and magnetism to be studied. Recent work is now suggesting the spin-ice surface may be important in mediating the ordering and associated phase space in such materials. Here, we detail a 3D artificial spin-ice, which captures the exact geometry of bulk systems, allowing magnetic charge dynamics to be directly visualized upon the surface. Using magnetic force microscopy, we observe vastly different magnetic charge dynamics along two principal directions. For a field applied along the surface termination, local energetics force magnetic charges to nucleate over a larger characteristic distance, reducing their magnetic Coulomb interaction and producing uncorrelated monopoles. In contrast, applying a field transverse to the surface termination yields highly correlated monopole-antimonopole pairs. Detailed simulations suggest it is the difference in effective chemical potential as well as the energy landscape experienced during dynamics that yields the striking differences in monopole transport.


2021 ◽  
Vol 118 (13) ◽  
pp. e2011916118
Author(s):  
Dieu My T. Nguyen ◽  
Michael L. Iuzzolino ◽  
Aaron Mankel ◽  
Katarzyna Bozek ◽  
Greg J. Stephens ◽  
...  

Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow.


2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Jeen-Hwa Wang

he effect of time-strengthening static friction on earthquake recurrence is numerically studied based on the normalized equation of motion of a one-body spring-slider model with thermal-pressurized slip-weakening friction having the characteristic distance, Uc, which is in terms of static friction coefficient, 𝜇. Considering the time-strengthening static friction coefficient, 𝜇(𝑡) = 𝜇+𝐵×𝑙𝑜𝑔(𝑡), we assume Uc=Uco/(1+𝐵×𝑙𝑜𝑔(𝑡)). Simulation results exhibit that TR, 𝜏D, D, and Vm, which represent the recurrence time of two events, the duration time of slip of an event, the final slip of an event, and the peak value of particle velocity of an event, respectively, are all similar for five values of Uco when B<0.01 and clearly different when B≥0.01. In general, Vm, D, and TR increase with B; and 𝜏D slightly decreases with increasing B and increases with Uco. An increase in D is particularly remarkable when Uco>0.3. The earthquake recurrence is almost periodic for small Uco; while the degree of periodicity decreases when either Uco or B increases. Either the time-predictable model or the slip-predictable model can approximately interpret the simulated earthquake recurrences with small Uco and small B, yet not for those with large Uco and large B. Simulation results exhibit that time-strengthening static friction produce an opposite effect on earthquake recurrence from the time-widening slip zone.    


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2591
Author(s):  
Ahmad Moghimikheirabadi ◽  
Clément Mugemana ◽  
Martin Kröger ◽  
Argyrios V. Karatrantos

We investigate nanoparticle (NP) dispersion, polymer conformations, entanglements and dynamics in ionic nanocomposites. To this end, we study nanocomposite systems with various spherical NP loadings, three different molecular weights, two different Bjerrum lengths, and two types of charge-sequenced polymers by means of molecular dynamics simulations. NP dispersion can be achieved in either oligomeric or entangled polymeric matrices due to the presence of electrostatic interactions. We show that the overall conformations of ionic oligomer chains, as characterized by their radii of gyration, are affected by the presence and the amount of charged NPs, while the dimensions of charged entangled polymers remain unperturbed. Both the dynamical behavior of polymers and NPs, and the lifetime and amount of temporary crosslinks, are found to depend on the ratio between the Bjerrum length and characteristic distance between charged monomers. Polymer–polymer entanglements start to decrease beyond a certain NP loading. The dynamics of ionic NPs and polymers is very different compared with their non-ionic counterparts. Specifically, ionic NP dynamics is getting enhanced in entangled matrices and also accelerates with the increase of NP loading.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3694 ◽  
Author(s):  
Qi Chen ◽  
Zhicheng Yan ◽  
Hao Zhang ◽  
Lai-Chang Zhang ◽  
Haijian Ma ◽  
...  

The as spun amorphous (Fe78Si9B13)99.5Zr0.5 (Zr0.5) and (Fe78Si9B13)99Zr1 (Zr1) ribbons having a Fenton-like reaction are proved to bear a good degradation performance in organic dye wastewater treatment for the first time by evaluating their degradation efficiency in methylene blue (MB) solution. Compared to the widely studied (Fe78Si9B13)100Zr0 (Zr0) amorphous ribbon for degradation, with increasing cZr (Zr atomic content), the as-spun Zr0, Zr0.5 and Zr1 amorphous ribbons have gradually increased degradation rate of MB solution. According to δc (characteristic distance) of as-spun Zr0, Zr0.5 and Zr1 ribbons, the free volume in Zr1 ribbon is higher Zr0 and Zr0.5 ribbons. In the reaction process, the Zr1 ribbon surface formed the 3D nano-porous structure with specific surface area higher than the cotton floc structure formed by Zr0 ribbon and coarse porous structure formed by Zr0.5 ribbon. The Zr1 ribbon’s high free volume and high specific surface area make its degradation rate of MB solution higher than that of Zr0 and Zr0.5 ribbons. This work not only provides a new method to remedying the organic dyes wastewater with high efficiency and low-cost, but also improves an application prospect of Fe-based glassy alloys.


2020 ◽  
Vol 73 (6) ◽  
pp. 1182-1201
Author(s):  
Changgeng Li ◽  
Hui Huang ◽  
Bowen Liao

The fingerprint positioning (FP) algorithm has been investigated extensively owing to the fact that it can provide a relatively ideal indoor positioning result. However, the effectiveness of the fingerprint algorithm relies on the size of fingerprint database, which prevents the algorithm from being widely applied in practical applications. In this paper, an improved fingerprint algorithm with access point (AP) selection strategy and reference point (RP) selection strategy is proposed to reduce the size of the fingerprint database and improve the positioning accuracy. The experimental results show that the proposed algorithm can reduce the storage size of the fingerprint database by more than 42·64%. Moreover, compared with the FP algorithm, the fingerprint algorithm with segment characteristic distance (FP-SCD) and the fingerprint algorithm with RP selection strategy (FP-RPSS), the average positioning error of the proposed algorithm is reduced by 20·15%, 10·83% and 11·57%, respectively. Therefore, the proposed algorithm has a good application in real positioning scenarios.


Sign in / Sign up

Export Citation Format

Share Document