Erratum to “Experimental study on the air/water counter-current flow limitation in a model of the hot leg of a pressurized water reactor”

2011 ◽  
Vol 241 (8) ◽  
pp. 3359-3372 ◽  
Author(s):  
Deendarlianto ◽  
Christophe Vallée ◽  
Dirk Lucas ◽  
Matthias Beyer ◽  
Heiko Pietruske ◽  
...  
2008 ◽  
Vol 238 (12) ◽  
pp. 3389-3402 ◽  
Author(s):  
Deendarlianto ◽  
Christophe Vallée ◽  
Dirk Lucas ◽  
Matthias Beyer ◽  
Heiko Pietruske ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 21-32
Author(s):  
Yulia Venti Yoanita ◽  
Sinung Tirtha ◽  
Eli Kumolosari ◽  
Bayu Gilang Purnomo

Fenomena aliran sangat penting dalam rangka untuk mengetahui lebih lanjut tentang mekanisme Counter-Current Flow Limitation (CCFL) atau transisi dari aliran berlawanan arah menjadi aliran searah. Pola aliran stratified menjadi karakter yang awal dalam fenomena selanjutnya. Peningkatan kecepatan udara yang kecil akan sangat mempengaruhi pola aliran berubah. Gangguan antar muka akan selalu besar seiring dengan peningkatan kecepatan udara. Alat yang digunakan untuk penelitian ini sama dengan salah satu komponen pada Pressurized Water Reactor (PWR) yang disebut hot leg dengan perbandingan 1/30. Hot leg adalah bagian pipa yang diamati dalam penelitian ini. Dimensi dari hotleg berupa pipa mendatar, pipa miring dan belokan yang terpasang menjadi satu dalam suatu saluran pokok PWR. Pada penelitian ini simulator hot leg dibuat dengan L/D = 50 dan L/D = 25. Simulator ini terdiri dari pipa horizontal, belokan dan miring dengan sudut kemiringan 50o. Visual yang dapat diamati dalam saluran hotleg, sehingga fenomena-fenomena yang terjadi dapat diamati secara rinci. Pengamatan visual dilakukan dengan menggunakan kamera berkecepatan tinggi. Sehingga data yang didapat dan diolah didapatkan secara valid. Hasil pengamatan yang diperoleh adalah pola aliran yang terjadi pada pipa horizontal. Penambahan kecepatan udara menyebabkan cepat terjadinya perubahan pola aliran pada L/D = 50. Sedangkan, pada L/D = 25 perubahan pola aliran dapat terjadi dengan kecepatan udara yang besar.


Author(s):  
Christophe Vallée ◽  
Deendarlianto ◽  
Matthias Beyer ◽  
Dirk Lucas ◽  
Helmar Carl

Different scenarios of small break loss of coolant accident for pressurized water reactors (PWRs) lead to the reflux-condenser mode in which steam enters the hot leg from the reactor pressure vessel (RPV) and condenses in the steam generator. A limitation of the condensate backflow toward the RPV by the steam flowing in counter current could affect the core cooling and must be prevented. The simulation of counter-current flow limitation conditions, which is dominated by 3D effects, requires the use of a computational fluid dynamics (CFD) approach. These numerical methods are not yet mature, so dedicated experimental data are needed for validation purposes. In order to investigate the two-phase flow behavior in a complex reactor-typical geometry and to supply suitable data for CFD code validation, the “hot leg model” was built at Forschungszentrum Dresden-Rossendorf (FZD). This setup is devoted to optical measurement techniques, and therefore, a flat test-section design was chosen with a width of 50 mm. The test section outlines represent the hot leg of a German Konvoi PWR at a scale of 1:3 (i.e., 250 mm channel height). The test section is mounted between two separators, one simulating the RPV and the other is connected to the steam generator inlet chamber. The hot leg model is operated under pressure equilibrium in the pressure vessel of the TOPFLOW facility of FZD. The air/water experiments presented in this article focus on the flow structure observed in the region of the riser and of the steam generator inlet chamber at room temperature and pressures up to 3 bar. The performed high-speed observations show the evolution of the stratified interface and the distribution of the two-phase mixture (droplets and bubbles). The counter-current flow limitation was quantified using the variation in the water levels measured in the separators. A confrontation with the images indicates that the initiation of flooding coincides with the reversal of the flow in the horizontal part of the hot leg. Afterward, bigger waves are generated, which develop to slugs. Furthermore, the flooding points obtained from the experiments were compared with empirical correlations available in literature. A good overall agreement was obtained, while the zero penetration was found at lower values of the gaseous Wallis parameter compared with previous work. This deviation can be attributed to the rectangular cross section of the hot leg model.


Sign in / Sign up

Export Citation Format

Share Document