Development of staffing evaluation principle for advanced main control room and the effect on situation awareness and mental workload

2013 ◽  
Vol 265 ◽  
pp. 137-144 ◽  
Author(s):  
Chiuhsiang Joe Lin ◽  
Tsung-Ling Hsieh ◽  
Shiau-Feng Lin
2012 ◽  
Vol 250 ◽  
pp. 713-719 ◽  
Author(s):  
Chih-Wei Yang ◽  
Li-Chen Yang ◽  
Tsung-Chieh Cheng ◽  
Yung-Tsan Jou ◽  
Shian-Wei Chiou

Author(s):  
Eugene Hayden ◽  
Kang Wang ◽  
Chengjie Wu ◽  
Shi Cao

This study explores the design, implementation, and evaluation of an Augmented Reality (AR) prototype that assists novice operators in performing procedural tasks in simulator environments. The prototype uses an optical see-through head-mounted display (OST HMD) in conjunction with a simulator display to supplement sequences of interactive visual and attention-guiding cues to the operator’s field of view. We used a 2x2 within-subject design to test two conditions: with/without AR-cues, each condition had a voice assistant and two procedural tasks (preflight and landing). An experiment examined twenty-six novice operators. The results demonstrated that augmented reality had benefits in terms of improved situation awareness and accuracy, however, it yielded longer task completion time by creating a speed-accuracy trade-off effect in favour of accuracy. No significant effect on mental workload is found. The results suggest that augmented reality systems have the potential to be used by a wider audience of operators.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xinyan Wang ◽  
Wu Bo ◽  
Weihua Yang ◽  
Suping Cui ◽  
Pengzi Chu

This study aims to analyze the effect of high-altitude environment on drivers’ mental workload (MW), situation awareness (SA), and driving behaviour (DB), and to explore the relationship among those driving performances. Based on a survey, the data of 356 lowlanders engaging in driving activities at Tibetan Plateau (high-altitude group) and 341 lowlanders engaging in driving activities at low altitudes (low-altitude group) were compared and analyzed. The results suggest that the differences between the two groups are noteworthy. Mental workload of high-altitude group is significantly higher than that of low-altitude group, and their situation awareness is lower significantly. The possibility of risky driving behaviours for high-altitude group, especially aggressive violations, is higher. For the high-altitude group, the increase of mental workload can lead to an increase on aggressive violations, and the situation understanding plays a full mediating effect between mental workload and aggressive violations. Measures aiming at the improvement of situation awareness and the reduction of mental workload can effectively reduce the driving risk from high-altitude environment for lowlanders.


Author(s):  
Tzu-Chung Yenn ◽  
Yung-Tsan Jou ◽  
Chiuhsiang Joe Lin ◽  
Wan-Shan Tsai ◽  
Tsung-Ling Hsieh

Digitalized nuclear instruments and control systems have become the main stream design for the main control room (MCR) of advanced nuclear power plants (NPPs) nowadays. Digital human-system interface (HSI) could improve human performance and, on the other hand, could reduce operators’ situation awareness as well. It might cause humans making wrong decision during an emergency unintentionally. Besides, digital HSI relies on computers to integrate system information automatically instead of human operation. It has changed the operator’s role from mainly relating operational activity to mainly relating monitoring. However, if operators omit or misjudge the information on the video display units or wide display panel, the error of omission and error of commission may occur. Therefore, how to avoid and prevent human errors has become a very imperative and important issue in the nuclear safety field. This study applies Performance Evaluation Matrix to explore the potential human errors problems of the MCR. The results show that the potential problems which would probably affect to the human performance of the MCR in advanced NPPs are multiple accidents, pressure level, number of operators, and other factors such as working environmental.


Author(s):  
Pamela S. Tsang ◽  
Michael A. Vidulich

Author(s):  
Steph Michailovs ◽  
Stephen Pond ◽  
Megan Schmitt ◽  
Jessica Irons ◽  
Matthew Stoker ◽  
...  

How team cognition is conceptualized has evolved rapidly in the last decade with the emerging use of a systems approach, moving the focus from the cognition residing in the heads of individuals, to that distributed across the team. This is referred to as ‘distributed cognition’. Increasingly, network approaches are being explored in attempts to model team distributed cognition. The specific domain of interest in the present study is the sociotechnical system within a maritime control room. This comprises human, machine and software agents interacting to interpret sensor data in order to develop a timely and accurate picture of surrounding contacts at sea. To achieve the goal, information is shared or integrated across the maritime control room consoles. The aim of this study was to develop and apply a suite of workload, situation awareness and team performance measures, including network analysis techniques, to examine how the distributed cognition of a team might change as a function of console configuration and information integration within a control room, and how these changes, if any, impact overall team performance. Sixteen teams of six novices conducted two one-hour scenarios operating generic maritime control room positions. Each team completed a one-hour simulation in each of two console configuration layouts with the order counter-balanced (within-subject design). Half the teams conducted the two scenarios in a high integration condition, and half in a low integration condition (between-subjects). The human machine interface (HMI) designs for the high integration condition emerged from a series of task analyses and user-centered design workshops. The emergent cognitively –oriented HMI designs are based on the assumption that each console can freely share information with other consoles. To create an analogue of current, less-integrated, and more stove-piped systems, a low integration condition was created where not all information was shared across consoles, but instead was shared verbally by console operators. Contacts detected at sea were introduced into the simulation and the team’s task was to assess, report and derive a solution (location, course, and speed) for each detected contact. Individual situation awareness was measured through the Situation Present Assessment Method (SPAM) and individual workload through the Air Traffic Workload Indicator Task (ATWIT). Team interaction from the scenarios were video recorded and we applied the Event Analysis of Systemic Teamwork (EAST) approach to examine the task, social and information networks which emerged. Team performance was measured as the accuracy and timeliness of the solutions We found higher information integration lowered average team workload, and improved average team situation awareness and team performance (faster solutions and a more accurate tactical picture). We found no impact of console configuration on team performance or any other dependent measure. The EAST method uncovered patterns in the network analysis that are potentially explanatory for the team workload, situation awareness and performance findings as a function of the information integration manipulation. This experiment showed that there can be reductions in workload, and improvements to situation awareness and performance when information is shared between consoles in a considered design. This has implications for HMI design within a team setting. The set of diagnostic metrics developed were largely effective in examining teamwork and team performance. Acknowledgements. The authors would like to thank Justin Hill (Royal Australian Navy) for his subject matter expertise, Graeme Muller (elmTEK) for his software, technical and infrastructure support, David Munro-Ford (Total Technology Partners) for his simulation programming, Dr Aaron Roberts for his advice on general aspects of the experiment, and Professor Paul Salmon for his advice on EAST.


Sign in / Sign up

Export Citation Format

Share Document