Elastic shakedown boundary determination of a cylindrical vessel–nozzle intersection subjected to steady internal pressures and cyclic out-of-plane bending moments

2014 ◽  
Vol 267 ◽  
pp. 189-196 ◽  
Author(s):  
Hany F. Abdalla
2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Hany F. Abdalla

In the current research, the elastic shakedown limit loads for a cylindrical vessel–nozzle intersection is determined via a direct noncyclic simplified technique. The cylindrical vessel–nozzle intersection is subjected to a spectrum of steady internal pressure magnitudes and cyclic in-plane bending moments on the nozzle end. The determined elastic shakedown limit loads are utilized to generate the elastic shakedown boundary (Bree diagram) of the cylindrical vessel–nozzle structure. Additionally, the maximum moment carrying capacity (limit moments) and the elastic limit loads are determined and imposed on the Bree diagram of the structure. The simplified technique outcomes showed excellent correlation with the results of full cyclic loading elastic–plastic finite element simulations.


Author(s):  
Hany F. Abdalla

Ninety degree back–to–back pipe bends are extensively utilized within piping networks of modern nuclear submarines and modern turbofan aero–engines where space limitation is considered a supreme concern. According the author’s knowledge, no shakedown analysis exists for such structure based on experimental data. In the current research, the pipe bend setup analyzed is subjected to a spectrum of steady internal pressures and cyclic out–of–plane bending moments. A previously developed direct non–cyclic simplified technique, for determining elastic shakedown limit loads, is utilized to generate the elastic shakedown boundary of the analyzed structure. Comparison with the elastic shakedown boundary of the same structure, but subjected to cyclic in–plane bending moments revealed a higher shakedown boundary for the out–of–plane bending loading configuration with a maximum bending moment ratio of 1.4 within the low steady internal pressure spectrum. The ratio decreases towards the medium to high internal pressure spectrum. The simplified technique outcomes showed excellent correlation with the results of full elastic–plastic cyclic loading finite element simulations.


Author(s):  
Hany F. Abdalla ◽  
Maher Y. A. Younan ◽  
Mohammad M. Megahed

In the current research, the shakedown limit loads of a cylindrical vessel–nozzle intersection are determined via a simplified technique. The cylindrical vessel–nozzle intersection is subjected to a spectrum of steady internal pressure magnitudes and cyclic out–of–plane bending moments on the nozzle. The determined shakedown limit loads, forming the shakedown boundary, are utilized to generate the Bree diagram of the cylindrical vessel–nozzle intersection. In addition to the determined shakedown boundary, the Bree diagram includes the maximum moment carrying capacity (limit moments) and the elastic limit loads. The currently generated Bree diagram is compared with previously generated Bree diagram of the same structure, but subjected to in–plane bending. Noticeable differences regarding the magnitudes of the generated shakedown boundaries are observed. Moreover, only failure due to reversed plasticity response occurs upon exceeding the generated shakedown boundary unlike cyclic in–plane bending where the structure experienced both reversed plasticity and ratchetting failure responses. The simplified technique outcomes showed excellent correlation with the results of full elastic–plastic cyclic loading finite element simulations.


Author(s):  
Hany F. Abdalla

Shakedown analysis of 90–degree back–to–back pipe bends is scarce within open literature. According the author’s knowledge, no shakedown analysis exists for such structure based on experimental data. Ninety degree back–to–back pipe bends are extensively utilized within piping networks of nuclear submarines and modern turbofan aero–engines where space limitation is considered a paramount concern. Additionally, on larger scales, 90–degree back–to–back pipe bend configurations are also found within piping networks of huge liquefied natural gas tankers. The structure analyzed is formed by bending a straight pipe to acquire the geometry of two 90–degree pipe bends set back–to–back each having a nominal pipe size (NPS) of 10 in. Schedule 40 Standard (STD). In the current research, the 90–degree back–to–back pipe bend setup analyzed is subjected to a spectrum of steady internal pressures and cyclic in–plane bending moments. A previously developed simplified technique for determining elastic shakedown limit loads is utilized to generate the elastic shakedown boundary of the 90–degree back–to–back pipe bend analyzed. In addition to determining the elastic shakedown boundary, elastic and post shakedown domains (Bree diagram), the maximum moment carrying capacities (limit moments) are also determined and imposed on the generated Bree diagram of the analyzed structure. The simplified technique outcomes showed excellent correlation with the results of full elastic–plastic cyclic loading finite element simulations.


1963 ◽  
Vol 30 (1) ◽  
pp. 134-135
Author(s):  
E. A. Utecht

Curves are presented which give stress intensification factors for curved, thin-walled circular tubes under various combinations of in-plane and out-of-plane bending moments.


1972 ◽  
Vol 7 (2) ◽  
pp. 97-108 ◽  
Author(s):  
M P Bond ◽  
R Kitching

The stress analysis of a multi-mitred pipe bend when subjected to an internal pressure and a simultaneous in-plane or out-of-plane bending load has been developed. Stress patterns and flexibility factors calculated by this analysis are compared with experimental results from a large-diameter, thin-walled, three-weld, 90° multi-mitred bend which was subjected to in-plane bending tests at various internal pressures.


Author(s):  
Hany Fayek Abdalla

This research focuses on generating the plastic collapse load boundaries of a cylindrical vessel with a radial nozzle via employing three different plastic collapse load techniques. The three plastic collapse load techniques employed are the plastic work curvature (PWC) criterion, the plastic work (PW) criterion, and the twice-elastic-slope (TES) method. Mathematical based determination of plastic collapse loads is presented and employed concerning both the PWC and the PW criteria. A validation study is initially conducted on a pressurized 90-degree pipe bend structure subjected to in-plane closing bending via finite element analyses along with an elaborate explanation of the mathematical approaches for determining the plastic collapse loads via the PWC and the PW criteria. Outcomes of the validation study revealed very good outcomes for the three techniques. Accordingly, the aforementioned three techniques are utilized to determine the plastic collapse load boundaries of a pressurized cylindrical vessel/nozzle structure subjected to in-plane (IP) and out-of-plane (OP) bending loadings applied on the nozzle one at a time. The TES method revealed considerate limitations when applied within the medium to the high internal pressure spectra. It is shown that both the PWC and the PW criteria outperform the TES method in computing the plastic collapse loads. The vessel/nozzle structure revealed relatively higher plastic collapse moment boundaries under IP bending as compared to OP bending. Conclusively, methodical steps are devised for determining the plastic collapse loads via the PWC and the PW criteria for the ease of systematic application on pressurized structures in general.


Sign in / Sign up

Export Citation Format

Share Document