scholarly journals Fully Ceramic Microencapsulated fuel in prismatic high-temperature gas-cooled reactors: Sensitivity of reactor behavior during design basis accidents to fuel properties and the potential impact of the SiC defect annealing process

2019 ◽  
Vol 345 ◽  
pp. 125-147 ◽  
Author(s):  
Cihang Lu ◽  
Takaaki Koyanagi ◽  
Yutai Katoh ◽  
Gerhard Strydom ◽  
Kurt A. Terrani ◽  
...  
Author(s):  
Zheng Yanhua ◽  
Shi Lei

Water-ingress accident, caused by the steam generator heating tube rupture of a high temperature gas-cooled reactor, will introduce a positive reactivity to lead the nuclear power increase rapidly, as well as the chemical reaction of graphite fuel elements and reflector structure material with steam. Increase of the primary circuit pressure may result in the opening of the safety valve, which will cause the release of radioactive isotopes and flammable water gas. The analysis of such an important and particular accident is significant for verifying the inherent safety characteristics of the pebble-bed modular high temperature gas-cooled reactor. Based on the preliminary design of the 250MW Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM), the design basis accident of double-ended guillotine break of a heating tube has been analyzed by using TINTE, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature and primary loop pressure, the graphite corrosion inventory, the water gas releasing amount, as well as the natural convection influence under the condition of the failure of the blower flaps shut down, have been studied in detail. The calculation result of the design basis accident indicates that, the maximal possible water ingress amount is less than 600 kg and the maximal fuel temperature keeps far below the design limitation of 1620°C. The result also shows that the slight amount of graphite corrosion will not damage the reactor structure and the fuel element, and there is no potential explosive risk caused by the opening of the safety valve.


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document