annealing process
Recently Published Documents


TOTAL DOCUMENTS

1605
(FIVE YEARS 334)

H-INDEX

37
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 615
Author(s):  
Qin Lu ◽  
Xiaoyang Li ◽  
Haifeng Chen ◽  
Yifan Jia ◽  
Tengfei Liu ◽  
...  

A mild two-step method of black phosphorus (BP) flake thinning was demonstrated in this article. Slight ultraviolet–ozone (UVO) radiation followed by an argon plasma treatment was employed to oxidize mechanically exfoliated BP flakes and remove the surface remains of previous ozone treatment. The annealing process introduced aims to reduce impurities and defects. Low damage and efficient electronic devices were fabricated in terms of controlling the thickness of BP flakes through this method. These results lead to an important step toward the fabrication of high-performance devices based on two-dimensioned materials.


2022 ◽  
Vol 327 ◽  
pp. 71-81
Author(s):  
Yun Xin Cui ◽  
Han Xiao ◽  
Chi Xiong ◽  
Rong Feng Zhou ◽  
Zu Lai Li ◽  
...  

The semi-solid extruded CuSn10P1 alloy bushings were homogenization annealed. The effects of annealing process on the hardness and wear properties of bushings were researched. The results show the Brinell hardness increases firstly and then decreases with the increase of annealing temperature and annealing time. With the annealing temperature increasing, the grinding loss rate and friction factor decrease firstly and then increase. At the annealing time of 120 min, the grinding loss rate decreases from 7% at the annealing temperature of 450 °C to 6% at 500 °C, and then increases from 6% at 500 °C to 12% at 600 °C. The friction factor decreases from 0.54 to 0.48 and then increases to 0.83. At the annealing temperature of 500 °C, the grinding loss rate decreases from 11% at the annealing time of 60 min to 6% at 120 min, and then increases to 15% at 150 min. The friction factor decreases from 0.67 to 0.48 and then increases to 0.72. The best wear performance and Brinell hardness can be obtained at annealing temperature of 500 °C for 120 min.


2022 ◽  
Author(s):  
Xing Zhang ◽  
Hao Chen ◽  
Wei Zhang ◽  
Lina Zhang ◽  
Xinyu Liu ◽  
...  

Abstract Exploring and fabricating a suitable photoanode with high catalytic activity is critical for enhancing photoelectrochemical (PEC) performance. Herein, a novel 3D hierarchical Fe2O3/SnO2 photoanode was fabricated by a hydrothermal route, combining with an annealing process. The morphology, crystal structure were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photon spectroscopy (XPS), and X-ray diffraction (XRD), respectively. The results reveal the successful preparation of Fe2O3 nanothorns on the surface of SnO2 nanosheets. The as-fabricated 3D Fe2O3/SnO2 photoanode yields obviously promoted PEC performance with a photocurrent density of approximate 5.85 mA cm-2, measured in a mixture of Na2S (0.25 M) and Na2SO3 (0.35 M) aqueous solution at 1.23 V (vs. reversible hydrogen electrode, RHE). This value of photocurrent is about 53 times higher than that of the bare SnO2 photoanode. The obvious improved PEC properties can be attributed to the 3D Fe2O3/SnO2 heterostructures that offer outstanding light harvesting ability as well as improved charge transport and separation. These results suggest that exploring a suitable 3D hierarchical photoanode is an effective approach to boost PEC performance.approach to boost PEC performance.


AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015007
Author(s):  
Ahmed H. Ibrahim ◽  
Laila Saad ◽  
Ahmed Ali Said ◽  
Moataz Soliman ◽  
Shaker Ebrahim

2022 ◽  
Vol 2160 (1) ◽  
pp. 012018
Author(s):  
Minglong Zhai ◽  
Xueyuan Liu ◽  
Hudong Chang ◽  
Honggang Liu ◽  
Bing Sun

Abstract The capping layers have great influences on the ferroelectricity of the Hf0.5Zr05O2 (HZO) film during annealing process. In this paper we compared the properties of the HZO film with two inorganic nonmetallic capping layers and no capping layer. The remnant (2Pr) of HZO films are 23.5 uC/cm2, 27.3 uC/cm2 and 20.3 uC/cm2 for no capping layer, Si3N4 capping layer and SiO2 capping layer, respectively. The capping layer can change the direction of the coercive filed shift even though the capacitors have the same metal electrodes.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 181
Author(s):  
Yuanyuan Dong ◽  
Zhe Zhang ◽  
Zhihai Yang ◽  
Ruixiao Zheng ◽  
Xu Chen

316LN stainless steel is a prospective structural material for the nuclear and medical instruments industries. Severe plastic deformation (SPD) combined with annealing possesses have been used to create materials with excellent mechanical properties. In the present work, a series of ultrafine-grained (UFG) 316LN steels were produced by high-pressure torsion (HPT) and a subsequent annealing process. The effects of annealing temperature on grain recrystallization and precipitation were investigated. Recrystallized UFG 316LN steels can be achieved after annealing at high temperature. The σ phase generates, at grain boundaries, at an annealing temperature range of 750–850 °C. The dislocations induced by recrystallized grain boundaries and strain-induced nanotwins are beneficial for enhancing ductility. Moreover, microcracks are easy to nucleate at the σ phase and the γ-austenite interface, causing unexpected rapid fractures.


2021 ◽  
Vol 33 (11) ◽  
pp. 119501
Author(s):  
Byunguk Kim ◽  
Taeseong Kang ◽  
Gucheol Lee ◽  
Hyeong tag Jeon

2021 ◽  
Vol 13 (24) ◽  
pp. 13947
Author(s):  
Georgios Samourgkanidis ◽  
Kostantis Varvatsoulis ◽  
Dimitris Kouzoudis

The magnetoelastic materials find many practical applications in everyday life like transformer cores, anti-theft tags, and sensors. The sensors should be very sensitive so as to be able to detect minute quantities of miscellaneous environmental parameters, which are very critical for sustainability such as pollution, air quality, corrosion, etc. Concerning the sensing sensitivity, the magnetoelastic material can be improved, even after its production, by either thermal annealing, as this method relaxes the internal stresses caused during manufacturing, or by applying an external DC magnetic bias field during the sensing operation. In the current work, we performed a systematic study on the optimum thermal annealing parameters of magnetoelastic materials and the Metglas alloy 2826 MB3 in particular. The study showed that a 100% signal enhancement can be achieved, without the presence of the bias field, just by annealing between 350 and 450 °C for at least half an hour. A smaller signal enhancement of 15% can be achieved with a bias field but only at much lower temperatures of 450 °C for a shorter time of 20 min. The magnetic hysteresis measurements show that during the annealing process, the material reorganizes itself, changing both its anisotropy energy and magnetostatic energy but in such a way such that the total material energy is approximately conserved.


Author(s):  
Zahra Abedi ◽  
Desiree Leistenschneider ◽  
Douglas Ivey ◽  
Weixing Chen

Abstract Birnessite type Mn oxide (potassium birnessite hydrate) powder (as-δ-MnO2) with a layered microstructure was prepared via a hydrothermal process. To improve its capacitive performance, the microstructure was thermally modified (annealed) at 400 oC (400-δ-MnO2) in a N2 reducing environment. By removing the hydrated cations (K+) layers inserted between the main layers of birnessite, damaging the microstructure, intercalation/deintercalation of the electrolyte species (Li+1) became more effective. Characterization of as-δ-MnO2 and 400-δ-MnO2 revealed that no phase transformation occurred during the annealing process. The microstructure became less crystalline and the total pore volume increased from 0.20 cm3 g-1 to 0.43 cm3 g-1, while the oxidation state of Mn remained 4+ after annealing the as-δ-MnO2 at 400 oC. The 400-δ-MnO2 sample was then coated on asphaltene derived activated carbon fibers (ACF-400-δ-MnO2) to improve the performance by making use of the high electrical conductivity and capacitive behavior of ACF. Coating the 400-δ-MnO2 sample led to a significant increase in the capacitance (328 F g-1 and 195 F g-1 for ACF-400-δ-MnO2 and 400-δ-MnO2 at 0.4 A g-1, respectively), improved energy and power values (~7 kW kg-1 at ~4.2 Wh kg-1 for ACF-400-δ-MnO2 and 240 W kg-1 at 2.4 Wh kg-1 for 400-δ-MnO2) and improved cycling behavior.


Sign in / Sign up

Export Citation Format

Share Document