Revaluation of the aging property modification factor of lead rubber bearings based on accelerated aging tests and finite element analysis

2019 ◽  
Vol 347 ◽  
pp. 59-66 ◽  
Author(s):  
Junhee Park ◽  
Young-Sun Choun ◽  
Min Kyu Kim ◽  
Daegi Hahm
2019 ◽  
Vol 2019 (0) ◽  
pp. D41
Author(s):  
Takahiro MORI ◽  
Nobuo MASAKI ◽  
Yu SAKURAI ◽  
Tomokazu HIGUCHI ◽  
Tadashi MUROFUSHI ◽  
...  

2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2020 ◽  
Vol 10 (4) ◽  
pp. 1502 ◽  
Author(s):  
Shen-Haw Ju ◽  
Cheng-Chun Yuantien ◽  
Wen-Ko Hsieh

This paper studies the seismic and micro vibrations of the high-tech factory with and without lead rubber bearings (LRBs) using the three-dimensional (3D) finite element analysis. The soil-structure interaction is included using the p-y, t-z, and Q-z nonlinear soil springs, while the time-history analysis is performed under seismic, wind, or moving crane loads. The finite element results indicate that the moving crane does not change the major ambient vibrations of the factory with and without LRBs. For a normal design of LRBs, the high-tech factory with LRBs can decrease the seismic base shear efficiently but will have a much larger wind-induced vibration than that without LRBs, especially for the reinforced concrete level. Because micro-vibration is a major concern for high-tech factories, one should use LRBs with a large initial stiffness to resist wind loads, and use a small final LRB stiffness to reduce the seismic load of high-tech factories. This situation may make it difficult to obtain a suitable LRB, but it is an opportunity to reduce the seismic response without increasing the micro-vibration of high-tech factories.


Sign in / Sign up

Export Citation Format

Share Document