A nonlinear soil-structure interaction analysis technique based on seismic isolation design response spectrum for seismically isolated nuclear structures with rigid basemat

2021 ◽  
Vol 381 ◽  
pp. 111334
Author(s):  
Eun-haeng Lee ◽  
Du-ri Jung ◽  
Inkyu Rhee ◽  
Jae-min Kim
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Seung Dae Kim ◽  
Jaeyong Yoon ◽  
Wanjei Cho ◽  
Jungwhee Lee

Piloti-type structure is a popular architectural style consisting of only columns or minimum number of shear-resisting walls on the first floor. The large difference in lateral stiffness between the first and the upper floors makes the structure very vulnerable to earthquakes. Through the recent earthquakes in Gyeongju (2016) and Pohang (2017), due to such structural disadvantages, many damage cases have been reported, especially in low-rise piloti-type buildings with five stories or less. In this study, seismic soil-structure interaction (SSI) analysis is conducted on low-rise piloti-type buildings considering Korean geotechnical characteristics, and the effect is analytically evaluated. To achieve this goal, seismic SSI analysis applying the measured Gyeongju earthquake and design response spectrum (DRM) based on the architectural design codes are conducted by constructing three-dimensional structural analysis models with a five-story piloti-type building and four different soil properties: fill (FI), alluvial soil (AS), weathered soil (WS), and weathered rock (WR). From the analysis results, it is found that WS soil is largely affected by the seismic SSI, and the influence of the seismic SSI is different for each soil type regardless of the type of earthquake. Through the parameter study, simple and reasonable estimates are proposed to consider the SSI effect on the base shear in low-rise piloti-type buildings.


Author(s):  
Frederick Tajirian ◽  
Mansour Tabatabaie ◽  
Basilio Sumodobila ◽  
Stephen Paulson ◽  
Bill Davies

The design of steel jacket fixed offshore structures in zones of moderate seismicity is typically governed by Metocean loads. In contrast the steel gravity structure (SGS) presented in this paper, is a heavy and stiff structure. The large mass results in foundation forces from seismic events that may exceed those created by extreme cyclonic storm events. When computing the earthquake response of such structures it is essential to account for soil-structure interaction (SSI) effects. Seismic SSI analysis of the SGS platform was performed using state-of-the-art SSI software, which analyzed a detailed three-dimensional model of the SGS supported on layered soil system. The results of this analysis were then compared with those using industry standard impedance methods whereby the layered soil is replaced by equivalent foundation springs (K) and damping (C). Differences in calculated results resulting from the different ways by which K and C are implemented in different software are presented. The base shear, overturning moment, critical member forces and maximum accelerations were compared for each of the analysis methods. SSI resulted in significant reduction in seismic demands. While it was possible to get reasonable alignment using the different standard industry analysis methods, this was only possible after calibrating the KC foundation model with software that rigorously implements SSI effects. Lessons learned and recommendations for the various methods of analysis are summarized in the paper.


Sign in / Sign up

Export Citation Format

Share Document