scholarly journals Constraining mean-field models of the nuclear matter equation of state at low densities

2012 ◽  
Vol 887 ◽  
pp. 42-76 ◽  
Author(s):  
M.D. Voskresenskaya ◽  
S. Typel
2010 ◽  
Vol 19 (08n10) ◽  
pp. 1575-1582
Author(s):  
L. FERRARI ◽  
P. C. R. ROSSI ◽  
M. MALHEIRO

In this paper we use a polytropic approximation to the equation of state for the interior of neutrons stars, described by relativistic hadronic mean field models. In this approximation, it is possible to obtain analytic expressions for the sound velocity and the incompressibility at the star center. We found a correlation between these quantities and the star mass. Using two well-known parametrizations of the nonlinear Walecka model for nuclear matter composed only of protons, neutrons and electron in β equilibrium, we obtain for a star mass of 1.43 M⊙ a central incompressibility Kc = (3000±100), around ten times the nuclear matter incompressibility, and a central sound velocity (v/c)2 ~ 0.3.


2013 ◽  
Author(s):  
M. Dutra ◽  
O. Lourenço ◽  
B. V. Carlson ◽  
A. Delfino ◽  
D. P. Menezes ◽  
...  

2007 ◽  
Vol 16 (02) ◽  
pp. 608-615
Author(s):  
J. ROŻYNEK

We show the density dependent corrections to the nucleon structure function in the frame of nuclear Relativistic Mean Field (RMF) models. These corrections are connected with the modifications of the parton distribution in nuclei emerging from generalized nuclear Fermi motion and final state interactions between the nucleon and the rest of the nucleus. The medium effects concern the nucleon structure, namely the changes in the nucleon rest energy, the enhancement of sea quark contribution (simulated with "nuclear pions") and the modifications of the transverse parton momentum distribution inside Nuclear Matter (NM). The sea parton distributions are described by the modified cloud of virtual pions in order to saturate the nuclear energy-momentum sum rule. The description of theses features are in good agreement with experimental data; the EMC effect for x > 0.15 and nuclear lepton pair production data has been described essentialy without free parameters. The influence of these medium modifications to the nucleon structure function within the equation of state in RMF models of NM will be discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 400
Author(s):  
G. Fiorella Burgio ◽  
Hans-Josef Schulze ◽  
Isaac Vidaña ◽  
Jin-Biao Wei

Background: We analyze several constraints on the nuclear equation of state (EOS) currently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the largest NS mass observed up to now, 2.14−0.09+0.10M⊙ for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5M⊙ deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.


Sign in / Sign up

Export Citation Format

Share Document