scholarly journals Graded off-diagonal Bethe ansatz solution of the SU(2|2) spin chain model with generic integrable boundaries

2020 ◽  
Vol 960 ◽  
pp. 115206
Author(s):  
Xiaotian Xu ◽  
Junpeng Cao ◽  
Yi Qiao ◽  
Wen-Li Yang ◽  
Kangjie Shi ◽  
...  
2018 ◽  
Author(s):  
Pranav Diwakar

The objective of this thesis is to study the isotropic XXX-1/2 spin chain model using the Algebraic Bethe Ansatz. To this end, we discuss the concept of integrability as well as the Lax operator and R-matrix, which help generate as many commuting operators in involution as there are degrees of freedom. We establish that the spin chain Hamiltonian belongs to this set and provide a definition of a state vector whose parameters, the Bethe roots, are constrained by a set of equations called the Bethe Ansatz Equations. We show that there is a one-to-one correspondence between the Bethe roots and the eigenfunctions of the system. Next, we proceed to study the nature of the low-lying excitations of both the ferromagnetic and antiferromagnetic model in the thermodynamic limit N → ∞ and show that the Bethe roots can be grouped into complexes or strings, which behave like bound states. We see that integrability is directly related to diffractionless scattering, which is obeyed by systems whose scattering matrices satisfy the Yang-Baxter Equation. In order to provide a more physical interpretation, we calculate the scattering matrix of the two-body problem for a system that satisfies the Yang-Baxter Equation and obtain exchange relations that are identical to those obtained using the Algebraic Bethe Ansatz for the XXX-1/2 spin chain model. Finally, we calculate the scattering matrix for a two-body problem interacting with a delta potential and show that this is the same as what we derived using the Coordinate Bethe Ansatz.


2021 ◽  
Vol 10 (11) ◽  
pp. 3491-3504
Author(s):  
A. Darwish ◽  
H.M. Ahmed ◽  
M. Ammar ◽  
M.H. Ali ◽  
A.H. Arnous

This paper studies $(2 + 1)$-dimensional Heisenberg ferromagnetic spin chain model by using improved modified extended tanh-function method. Various types of solutions are extracted such as bright solitons, singular solitons, dark solitons, singular periodic solutions, Weierstrass elliptic periodic type solutions and exponential function solutions. Moreover, some of the obtained solutions are represented graphically.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050244
Author(s):  
Lu Hou ◽  
Bin Shao ◽  
Yuguang Zhu

We study the quantum speed limit (QSL) time of the two-qubit XYZ spin chain model with the influence of intrinsic decoherence. We show that the intrinsic decoherence can suppress the evolution of this system, no matter what initial states the two qubits start from. The investigation of entanglement reveals that quantum correlation is the physical reason for the acceleration of the system. In addition, we also demonstrate that for different initial states, external magnetic field may have opposite influence on QSL time and it mainly derives from the inhibition of entanglement as magnetic field increases.


2017 ◽  
Vol 95 (4) ◽  
Author(s):  
F. Deuretzbacher ◽  
D. Becker ◽  
J. Bjerlin ◽  
S. M. Reimann ◽  
L. Santos

2016 ◽  
Vol 14 (03) ◽  
pp. 1650018 ◽  
Author(s):  
Qingyong Wang ◽  
Yangyang Du ◽  
Chunfeng Wu ◽  
Gangcheng Wang ◽  
Chunfang Sun ◽  
...  

In this paper, it is shown that the Hamiltonian of the open spin-1 XXZ chain model can be constructed from the generators of the Birman–Murakami–Wenzl (B–M–W) algebra. Without the topological parameter d (describing the unknotted loop [Formula: see text] in topology) reducing to a fixed value, the topological basis states can be connected with the open XXZ spin chain. Then some particular properties of the topological basis states in this system have been investigated. We find that the topological basis states are the three eigenstates of a four-spin-1 XXZ chain model without boundary term. Specifically, all the spin single states of the system fall on the topological basis subspace. And the number of the spin single states of the system is equal to that of the topological basis states.


Pramana ◽  
2022 ◽  
Vol 96 (1) ◽  
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Mustafa Inc ◽  
Adil Jhangeer ◽  
Muhammad Muddassar ◽  
Barka Infal

2016 ◽  
Vol 49 (33) ◽  
pp. 335302 ◽  
Author(s):  
Jean-Michel Lemay ◽  
Luc Vinet ◽  
Alexei Zhedanov

1990 ◽  
Vol 147 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Luca Mezincescu ◽  
Rafael I. Nepomechie ◽  
V. Rittenberg

Sign in / Sign up

Export Citation Format

Share Document