New soliton solutions of Heisenberg ferromagnetic spin chain model

Pramana ◽  
2022 ◽  
Vol 96 (1) ◽  
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Mustafa Inc ◽  
Adil Jhangeer ◽  
Muhammad Muddassar ◽  
Barka Infal
2021 ◽  
Vol 10 (11) ◽  
pp. 3491-3504
Author(s):  
A. Darwish ◽  
H.M. Ahmed ◽  
M. Ammar ◽  
M.H. Ali ◽  
A.H. Arnous

This paper studies $(2 + 1)$-dimensional Heisenberg ferromagnetic spin chain model by using improved modified extended tanh-function method. Various types of solutions are extracted such as bright solitons, singular solitons, dark solitons, singular periodic solutions, Weierstrass elliptic periodic type solutions and exponential function solutions. Moreover, some of the obtained solutions are represented graphically.


2019 ◽  
Vol 33 (30) ◽  
pp. 1950368
Author(s):  
Aliyu Isa Aliyu ◽  
Yongjin Li ◽  
Mustafa Inc ◽  
Dumitru Baleanu ◽  
Ali S. Alshomrani

This paper investigates the ([Formula: see text])-dimensional Heisenberg ferromagnetic spin chain (HMF) model. The model describes the nonlinear spin dynamics of HMF. By adopting the modified [Formula: see text]-Expansion and projective Riccati equation methods, we report the dark, combined dark-bright and envelope optical solitons, complexitons singular solutions of the equation along with the conditions that must be satisfied for solitons to exist. The physical structure of the obtained solutions are shown by graphic illustration in order to give a better understanding on the dynamics of optical solitons.


2020 ◽  
Vol 960 ◽  
pp. 115206
Author(s):  
Xiaotian Xu ◽  
Junpeng Cao ◽  
Yi Qiao ◽  
Wen-Li Yang ◽  
Kangjie Shi ◽  
...  

2020 ◽  
Vol 35 (29) ◽  
pp. 2050244
Author(s):  
Lu Hou ◽  
Bin Shao ◽  
Yuguang Zhu

We study the quantum speed limit (QSL) time of the two-qubit XYZ spin chain model with the influence of intrinsic decoherence. We show that the intrinsic decoherence can suppress the evolution of this system, no matter what initial states the two qubits start from. The investigation of entanglement reveals that quantum correlation is the physical reason for the acceleration of the system. In addition, we also demonstrate that for different initial states, external magnetic field may have opposite influence on QSL time and it mainly derives from the inhibition of entanglement as magnetic field increases.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750013 ◽  
Author(s):  
Xue-Hui Zhao ◽  
Bo Tian ◽  
De-Yin Liu ◽  
Xiao-Yu Wu ◽  
Jun Chai ◽  
...  

Under investigation in this paper is a generalized (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain. Lax pair and infinitely-many conservation laws are derived, indicating the existence of the multi-soliton solutions for such an equation. Via the Hirota method with an auxiliary function, bilinear forms, dark one-, two- and three-soliton solutions are derived. Propagation and interactions for the dark solitons are illustrated graphically: Velocity of the solitons is linearly related to the coefficients of the second- and fourth-order dispersion terms, while amplitude of the solitons does not depend on them. Interactions between the two solitons are shown to be elastic, while those among the three solitons are pairwise elastic.


2017 ◽  
Vol 95 (4) ◽  
Author(s):  
F. Deuretzbacher ◽  
D. Becker ◽  
J. Bjerlin ◽  
S. M. Reimann ◽  
L. Santos

2016 ◽  
Vol 14 (03) ◽  
pp. 1650018 ◽  
Author(s):  
Qingyong Wang ◽  
Yangyang Du ◽  
Chunfeng Wu ◽  
Gangcheng Wang ◽  
Chunfang Sun ◽  
...  

In this paper, it is shown that the Hamiltonian of the open spin-1 XXZ chain model can be constructed from the generators of the Birman–Murakami–Wenzl (B–M–W) algebra. Without the topological parameter d (describing the unknotted loop [Formula: see text] in topology) reducing to a fixed value, the topological basis states can be connected with the open XXZ spin chain. Then some particular properties of the topological basis states in this system have been investigated. We find that the topological basis states are the three eigenstates of a four-spin-1 XXZ chain model without boundary term. Specifically, all the spin single states of the system fall on the topological basis subspace. And the number of the spin single states of the system is equal to that of the topological basis states.


Sign in / Sign up

Export Citation Format

Share Document